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Abstract

A new scheme of adaptive control is proposed. This scheme does
not require a priori knowledge of the structure of the plant to be con-
trolled. The principal part of the scheme is a procedure which decides
the order of the model of the plant. A criterion for the order deter-
mination is developed. Using this criterion, we can decide whether to
keep the current controller or to adopt a new controller based on the
information gathered during the operation of the system. The effec-
tiveness of the scheme is illustrated by a numerical example.

1. Introduction

There is a vast literature about adaptive control systems (Witten-
mark [10]). The widely shared assumption there is that the structure,
or the parametrization of the plant to be controlled is known. For
example, Alster and Bélanger [3] discussed dual control of a single-
input-single-output plant: '

M L
(1) %= ()Y i-m+ > by(kyuws—i+ex

where y, is the output, u, is the input and ¢, is a zero-mean white
Gaussian sequence. They assumed that orders M and L are known.
This assumption limits the applicability of the result to a rather re-
stricted region.

Considering that the success of the (non-adaptive) optimal control
theory in the real plant control is brought when a practical method to
identify the order of the plant is developped (for example, Otomo et
al. [7] and Otsu et al. [8]), it is highly desirable to realize an adaptive
control system which has ability of order identification.

The purpose of this paper is to present an adaptive control scheme
which determines the order of the model of the plant analyzing the
input-output data of the plant. In next three sections we develop a
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criterion for the order determination. The adaptive control scheme
based on the criterion is given in Section 5.

2. Statement of the problem

We assume that the plant to be controlled can be expressed by
M* L*
(2) yk:,nzjl a;ﬁyk—m‘*‘gl bfuy_+ei

where ¢, is a zero-mean white Gaussian sequence of the variance ¢*°.
For simplicity, it is assumed that the parameters of the plant is time-
invariant. We replace the assumption that M* and L* are known with
a weaker assumption that both of M* and L* are bounded above by a
known constant M,. The problem is to design a control system which
minimizes the performance index:

K

(3) J=limE {1 > (wywauui_l)} ’
K- K k=1

where w, and w, are given positive constants. It is assumed that only

available information is the past observation {(u._;,¥:)|—T+1=k=0}.
If the dynamics (2) is known, (8) is minimized by a control system

M* L*-1
(4) uk=m2=1 ChlYx-mirt g AUy »
where c¢*=(c¥, ¢¥,---, cf.) and d*=(d}, d¥,---,d¥._,) are constant gain
defined by the equations (see the Appendix):
g5 (m=1)
ck=

M*

2 aFgT mia (m=2,38,---, M*)
j=m

(5)

L*

dik: N b?‘gf}(—H! (l=19 2,.--, L*_l)

j=t+1

gt=(g¥, g¥,- -+, g¥) is obtained as a limit of g; which is defined by the
iteration (7=1,2,38,:--):

S,=(w,+b*P,_b¥)
T,=P,_,—P,_b*S}¥P,_,
P.=0¥T0*+Q

gi= —Sh*P,_ 0%,

(6)

where (') denotes the transpose. M,X M;-matrices @*, Q and M;-vector
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b* are defined as follows.

raf, 1, 0,- .- , 07
af, 0, 1, -
*=| o, ', 0
0, 1
L0, 0, --- , 0.
Wy
Q= 0

E*:(b;“,b;“,..-’ bt'; 09"'70),'

The initial value P, is set equal to Q.

Now let us consider the situation where the orders of the plant
is unknown. If M and L are specified, we can design a certainty equiv-
alence control (Aoki [2]) by the procedure:

Step 1: Fit the model:
M L.
(7) _ ?/k=m2=1 a’myk-m+£:1! b1 +¢

to the data by the maximum likelihood method.

Step 2: Design a control system:

M R L—-1 A
(8) uk="§l ConWrkmir1t E oty
assuming that the estimated parameters of the plant are true.

Step 1 is done as follows. Assuming that e, is a zero-mean white Gaus-
sian sequence of variance o3, ., the log likelihood of the model (7) with
respect to the data is approximately given by

0
(9)  Uows,ok)=—Llogoh——t— 3 (Ge—tls2es)
2 4L k=—T+1

where oy, and z,_, are 2M,-vectors defined by
QM,L=(q'l’ Qgy* vy Ay, 0)‘ c 0, b19 bz,' ccy bL; 0" . '10),

and M, M,

Zeor=Yr-15 Yr-2s* * *» Yiomyr Upo1y Uozs * * * Up—x,)’

respectively. Note that y_r,¥.r-i, ) Yoronyr Uors Uogotre o) Uoroagnr
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and u_r_y, are not observed, and assumed to be zero. Maximum likeli-
hood estimates &, , and &%, are obtained by solving the likelihood
equations :

’ A —
EA{,L AEM,L QM,L—EM,LQ
A2 N
oM, L—— r—w

which are derived from (9). Eu ., 4, 7 and r defined by

M, M,
r-l <
’ 0 M

Eu,z. =

and

respectively. If M=M* and L=L*, error covariance matrix V. of
the estimate @,,, can be estimated. Especially, Vy, x, is approximately
given by

(10) Vuo, ¥, = O, w, A

It can be also proved that o}, x, and @y, x, are asymptotically independ-
ent each other.

We will denote the fitted model (7) and the control system (8) by
M(@y, 1, 6%,.) and C(éu, 1), respectively, where é,“ is a 2M,-vector de-
ﬁned by éM,Lz(ély éz:' Y éu; 09' ) 07 (21; &2" 0y &L—ly 0!' ty 0)° App]ying
the above procedure to every possible pair of M and L, we obtain a
set of control systems {C(éﬂ,L)]1§M§M, 1=L=<M,}. There arises a
problem of how to select the best controller. An answer to this prob-
lem is given in the next section.
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3. Criterion

The performance of each controller C(é,, 1) is a function of its

parameters. Let this function be denoted by J(é,,,,,,: w*, 6¥), where o*
is a 2M,-vector defined by

— M, M,
Q*=(aik’ a'?y"'y“fl*: 0’°") O’ b;k, b;k".'i bt*, 0:"') 0) .

Apparently, the best choice is the one which minimizes J(é,,,,,; *, ¢*).
However o* and o¢* are unknown and we must base the decision on
some estimate of the value. One possibility is to replace w* and ¢* by
the estimates @y, x, and ou,x,, respectively.

Let 8% . € Oy, be defined by the equation:

(11) J(@% 23 0%, %)= min J@; o*, o*),

0€6y, .

where 6, ; is the set of 2M;-vectors defined by
Ow,.={(0y, 0, -, 02M0)|0x+1= te =0u0=0, 0M0+L= T =02M0=0} .

Then, taking up to the 2nd order terms of the Taylor series expansion,
J(é,,, Li @u, x,» Ox,x,) Can be approximated by

(12)  JOuz; by G20y x)
~J(0% 1 ; 0¥, ‘7*)+ (01{ L—0% L)+ (mxo , —w*)

+$(a,,o,xo—a*)+—(e,,L—Q;,L)'%Q—{(Q,,,L—Q;;,L)

1

+ 0l (QMO, M,

—0) ),aJ

(a)lfo M, Q*)

+%(&”oﬂo"“’ Y = 27

(Uxouo o*)

3J

(0¥ (é,,L—Q;;,L)

+(”M0M0—0' )3 ao(axL Q.’!k{,L)

+(¢Tx° My— G0 *) (@xo,uo—ﬂ*) ’

2
dodw
where 9J/38, 8J/0w, 3*J/3s08 and o°J[dsdw are row vectors whose jth ele-
ments are given by 9J/30,(0%, . ; @*, o*), 8J[0w/(8% . ; w*, 0*), 8*J[3500,(6% . ;
0¥, ¢%) and J/0cdwi(0F . ; w*, p*) respectively. 3°J[d6}, 3'J/de® and &%/
0wdd are (2M, X 2M,;)-matrices whose i-j elements are given by
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*J

% (D* % ,
20,06, Lz @ %)

2
aJ @} .; @*, 6%) and aJ

%15 0, o*
60){60, ' aw,;a(oj ( nz, @59 )

respectively. Similarly, J(é,,, .; o%, ¢*) is approximated by
(13) J(()M 1 0¥, a¥)=J(0% . ; o, a*)+ (0M L —0%)
+§(é,,,,;—o L)' (Q.“ 0%1) .

Subtracting (18) from (12), we get
(14) J(éu Ly C:’uo My 3;10 Mo)_J(éj[ L; 0¥, a¥)

a (mﬂo My Q*)_I_ (0‘”0 ”o_a )

,aJ

+= (—uo Mo_-a—’*) (“’Ma u,—@%)

+"2"(&yo,xo 4 )’aJ(C"M0 M, —a*)

+(@M0,Mo_“’ Yy 8?03{0 (éM,L"QEk:,L)

+(&”o:1"o—‘7*) 9090 (QM,L—QE'},L)
2

+ Gty g — ) ai 5; C—

We assume here that é,-, ;. satisfies the equation:

A - A . . A A
JOu, 25 D,y 0’10[0.1{0)2' min J(@; DOy, m, 5 Uyo,yo) .
w, L

Then, é,,,, : has to satisfy the (M+L—1) equations:

(15) gHJ (0111. H O)MO #y Uuo ”o) 0 AZiEM, My+15i=sM+L-1).

i

Approximating the left-hand side of (15), we get

oty
Oy . — 0%
aoiaa( Oun—0i)+ 30,00

(16)

(on, ¥y 0*)=0

where 3*J/36,00 and 3'J/00,0w are row vectors whose jth elements are
0%J]060,00,(0% . ; @*, 0*) and 0°J/30,0w,(0% . ; @*, o*) respectively. Note that
the equations:
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*J
00,00

@k .; 0%, 06%)=0 (1Zi=M, M+1<iEM+L-1)

are derived directly from the assumption (11). Since (éy,L"—lek[,L) €60y 1,
(16) is equivalent to the equation:

a7 B g{;’ B 21 But 2oy G o — 0% 1)
+Eu 11 (6(2)6']0 ) (D, w,—0*)=0.

Solving the equation (17), we get
B, 21 (0, — 0% 1)

2
=~ (Bus- lgf;{E“ ) Bua (22 a*’_)@xo,uo—g*).

The fact that (é,,, 1—0% 1) € Oy ., implies that

5 * 9*J -
(18) QH,L—QM,L——EHL 1 EHL—I 06" EML 1
2
Eu L-1 (afogo ) (_xﬂ,uo—Q*) .

Substituting (18) into (14), we obtain

9 JOur; duyy O, ,0)—.7(6,, L3 @%, %)
_oJ
T e

(‘”uoxo w*)+ P (UMOMO_U)

+= (wxo ”o_w*)l (wxo M, —w¥)

+§ Gy — ™) g{ Gy, —*)
2 -1
_(QMO,MO_Q*)’<613%> fv,L-1 <EML 1 30{ EML 1)
2
“Exza (G?Q;IQ ) (Quo.xo‘—@*)

+(5'MO,MO—0*) %

T (=)

Taking expectation of (19), we get the asymptotic equation:
(20) E {J(éx Ly Oy ny» &Ilo Mo)} —E {J(éM,L ; w*, o¥)}

a%J 1 3%J
“Et [ag V*]+ > 25 B (=)
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[ B i 2

where it is assumed that @y, x, and ox,x, are asymptotically consistent
estimates of w* and o* respectively, and independent of each other.
V* is the error covariance matrix which is by definition V*=E {(0y, x,
— 0*) (O, w,— ).

(20) shows that J(é)l{,L; @y, x,) T, u,) is biased as an estimate of J(éy, I
w*, o*). But, if a good estimate B, , of the last terms of the right-
hand side of (20) is available, a criterion defined by

(21) j(éu, L @Mo, My &MO, Mo) ZJ(éM. L i’uo, My &Mo, u,,)—'BM, L

will serve as an useful estimate of J(éy, .; @*, 6%). Note that the first
and the second term of the right-hand side are common for all combi-
nations of M and L, and need not be evaluated for the purpose of the

comparison of the controller performance. We may use 327/ag,\ag=azJ/

A A /\ A a A A
0wd0(Bs,, 1, Day 1,0 Osyn,)s 006" =T[98 (O, w,5 Daryyrays Osyme) 3NA Vi ar, s
which is defined by (10) as estimates of 0%//0wdd(0} ;; w*, 0*), 3°J/08"-
0% .; ®*, 0*) and V* respectively, provided that the data length is suf-
ficiently large. Thus we propose the criterion

(21) j(éM, L i’uo, My &MO, ,)

=15 oy )+ [

)

)
E2AT

* <EM,L—15Q—2E5K,L—1> EM,L—I <_a;)—az> VMO,MO:I

S
>

!
f

as an answer to the problem. We choose the control system C(é,,, z)
which minimizes (21) as the best one. We will show the numerical
procedures to calculate the criterion in the next section.

4. Numerical procedure

Since the plant and the controller are assumed to be time-invariant,
the performance index (3) has an equivalent expression :

(22) J=lim E {w,yi+w,ui}

Then, J(é,.,, L3 @u,u,0 Tx,x,) €N be evaluated if lkimE{y,%} and lkimE {u?}

are calculated. The system which is composed of the plant:

My My,
Y= 21 a’myk—m+l211 by-i+e;
m= =
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and the controller:

U=

Mx

3
I

1

is equivalent to the system:

(23)

L-1 .

(P 12—1 die,

&k

0

2 =¢o| Pt t . ,

0

487

where 2, is a 2M-vector defined in Section 2, and ¢, and ¢, are (2M; X

2M,)-matrices defined by

1
0
1
(24) b= — N B %
Cy, Cyy y Cury 07 yO dlydzy '!dL—Ir 07
1
and
dudzy"‘,duo 61’82" 752){0
1
" 1,0
(25) o=
1
1
respectively. Denoting ¢y, by ¢, (23) is expressed by
&k
0
0
(26) 2, =21+
Ci&x
0
0
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From the assumption that ¢, is a zero-mean white Gaussian sequence
whose variance is ¢, x,, We obtain

(27) E{z2:}=¢E {gk-131’c-1}¢,+s ’
where S is a (2M; X 2M;)-matrix defined by

1 |é

If the limit X=1kimE{g,,g,’,} exists, X is given as the solution of the

equation
(28) X=¢X¢'+S .

There are several methods to solve the equation of type (28), but the
algorithm by Kitagawa [6] is especially suited for the present use. If

X is obtained, J(é,,,, L5 Puyny Ouyn,) 18 calculated by the equation
(29) J(QM,L; Dy, w1y &MO,MO)=wall+wuXMo+l,Mo+1 ’

where X, denotes the i-j element of the matrix X. The derivatives
of J can also be calculated. For example, ﬁ/aalzaJ/ael(é,,,L; Dury, 10, O3, x,)
is obtained as follows. Let Y=4X/a6,, where 9/dd, denotes the compo-
nentwise operation. Then Y is obtained by solving the equation

Y=pvy+ 2 xp+ox(2)+ 22,

where X is the solution of (28). aJ/d6; is given by

oJ

20, =w, Y+ W, Yag1, 41 -
0,

2nd order derivatives such as ﬁ\J/aolaoz are calculated from Y and X in
a similar fashion.
The order determination procedure is summarized as follows.

Step 1. Fit the model M(@y, x, o%,x,) to the data {(ues, ¥)|l—T+1=
k<0} and compute the estimate of the error covariance ma-
trix 17,,0, -

Step 2. Design the controller C(_é,,,o, )

Step 3. Compute the matrices

DS
o*J *J

dwdl  wil

(_Mo My wno My UMO Mo)
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and

2T T

A A
Fra —W(QMO, My Oy, My On,, M(,)

Step 4. For each pair of M and L,
a) Fit the model M(&y ., o% ) to the same data
b) Design the controller C(é,,,L)
¢) Compute the function J(8y, s ; @uy ., T, x,)
d) Evaluate the criterion j(éM,L; Dy, 10,1 Oat0,)-
Step 5. Select the pair (M, L) which minimizes the criterion J(é,,, L}

@ Ou, u,)
Dy, uyr Tuy, 1,)-

5. A scheme of adaptive control

The order determination procedure in the previous section is made
adaptive by applying the procedure every T stages. But there are
two problems to be considered. The first problem concerns with the
problem of closed-loop operating data (Box and MacGregor [5]). Suppose
that data {(ue_:, ¥:)|1Sk<T} is obtained from the plant (2) which is
controlled by the controller (8). Then the matrix:

T
A =k_21 Zi—1%—1

becomes singular and the model fitting in the procedure is doomed to
fail. This difficulty is avoided by adding a white Gaussian noise to the
control input. How to decide the intensity of the noise is a difficult
problem itself. But we can estimate the performance index of the
controller :

M L-1 ,
(30) uk=kE=l Cnli—mirt E A +&

where &, is a zero-mean white Gaussian sequence of variance o, by
slightly modifying S in the equation (28). Then it is possible to set i
so that the control purpose is not too violated. Let the controller (30)
and the performance index of the controller be denoted by C(é,,,, Ls Ge)

and J(é,,,L, g¢; w*, o*) respectively. Then the adaptive order determina-

tion procedure at rth stage is given as follows,

Step 1. Fit the model M(du, x,, o%,x,) to the data {(ui_s, )| (r—1)T+
1=<k=:T} and compute the estimate of the error covariance

matrix VMO, Ay
Step 2. Design the controller C(éyo, x,), and choose g, so that J(é,,o, My
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0:; D, u,» Ou,u,) 1S NOt too large compared to J(@u,x,, 0; Dy 3y

Oy u,)-
Step 3. Compute the matrices
§J _ & e
(31) 5wl ='W(_}I{o,llrov O:5 Oy as 0'110,1(0)
and
*J _ o .
(32) W Py (0“0 Myr O¢ w”o My a”o Mo) :

Step 4. For each pair of M and L,
a) Fit the model M(@y ., o3, .) to the data.

b) Design the controller C(é,,, L)-
¢) Compute the function J(é,,, L 05 Dug 0,5 Oat ;)

d) Evaluate the criterion .f(é,,, L1 0: Duyys Tagy )
Step 5. Select the pair (M, L) which minimizes the criterion:

~ A
AL oA A
JOx, 1, 0:; Dy, 9 UMO,MO) .

Note that j(éM,L,&e;QMO,HD, 0x,u,) is defined by the right-hand side of

T T~ T

(21), provided that 0°J/0wdd and 9°J/3§" are defined by (31) and (32) re-
spectively.

Another problem arises from the following reflection. Suppose that
a controller which is really optimal is in operation. If data are collected
under this condition and a new controller is designed by the procedure,
this new controller cannot be better than the current controller. To
avoid the useless change of the controller, we should compare the per-
formance of the new controller with that of the current controller and
choose better one. This can be done as follows. Let the current con-
troller has parameter 8*. Then J(6%, 6;; @y, x, ox,x,) and J(@*, a;; 0*, o*)
are approximately given by

33) (B, 6.5 Guynyr g ;)
J

~J(0M0M0706’w* 0'*)+a @ M0M0)+ (wyouo *)
2L Gy =)+ L@ 08,0 S0 0, )

+-—(wyo w,— @ )’ (a’xo u,— @)

—(0'110 M, ‘7*) (O'Ma My —a*)
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. ik
+ (on, My Q*)’ —éaﬁfJo @+— Q;Eu' ”o)

. o*J
+ (GMO’ M, ‘—0'*) 5@ (Q+ "‘Qj!klo, Mo)

a°J

H00m (@x,,, ¥y~ w*)

+(&M0,Mu—a*)

and
(34) J(Q+, &5; Q*, G*):J(Q:!kfo,ﬂﬂs 6‘6; Q_)*a ‘7*)
+%(Q+—Q§O,uo)

7]
06

—i—%(d"—é’f{n,uﬁ)

&

Data collection under the operation ot

the controller C(8*, of)

(@ —0%,x,)

Computation of the Model M(6x, x,: 0x,x,)
the optimal controller C(8%3,45.) and

its expected performance

=~
AL A A
di=J(lx,1, 7:; (237 ") Vx.,,u.,)

Evaluation of the function

Jy=J(8% 0.3 éx,,,xu» &ya.ua)

yes

Set the controller C(8%, of) equal
to Cllz: 3

Fig. 1 The proposed adaptive control scheme
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2
+(QKO,MO—Q*)'_?L(E—Q:O,%)

[05//]
+ (0o ,— 0 )a 2 (0+"'0M0 #,)
respectively.
Subtracting (34) from (33) we get
(35) J(8*, 8¢5 Buyyr T, Mo)—J(m b @%, 0¥)
gf (@uy 2, )+—‘(0u0 #,— )
(o, = 0% 2 oy~ 0?)

—(Uuo Mo'_a'*)' (a'zlo M, —a¥)

a 2
0%
0cdw

‘|‘(¢A"yo,z{o"‘0'*)

(—xo M, —w¥) .

Taking expectations on both sides we obtain the asymptotic equation

(36) E {J(Q+, &5; (byo My &Mo MD)} '_'J.(ﬂ+ &5; 0)*, G*)
_1 %] 1 0%J
= tr[ - V*}+ > T E (G i—o®)

where it is assumed that @y, x, and ox,x, are asymptotically consistent
estimates of «* and ¢*, and independent of each other. Comparing (36)
with (20) it is concluded that J(6*, 6;; @y, x,» ou,»,) can be used as an
estimate of the performance of the current controller. Now we can
present our adaptive control scheme in its final form. It is shown

schematiecally in Fig. 1.

6. Numerical example

To illustrate the effectiveness of the scheme, the following plant
is considered.

M L*
37 Yx :mZ:l a:ﬁ?/k-m+l§ bfug_+¢

where ¢, is a zero-mean white Gaussian sequence of variance 1 and
M*=L*=4. a*=(af, af,a¥, a¥) and b*=(b}, b¥, b}, b}) are given as
follows :

a*=(—0.6, —0.74, —0.18, —0.1)
b*=(0.2, —0.66, 0.1, —0.08) .
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The performance index to be minimized is
leim E {10yi+ui} .
Only a priori information assumed is that
1=M*<5 and 1<L*<5.
Data of length 500 is collected under the operation of the controller :

(38) Uy, = —0.255y,+0.098y,_,—0.220y,_,+0.111y, _,
+0.792u,,_,—0.554u,_,+0.144u,_,+ &, ,
where ¢, is a zero-mean white Gaussian sequence of the variance 0.04.

(38) is obtained as the optimal controller for the initial guess of the
plant :

(39) '!/k=m2=1 a;yk-m‘l'?_l bty +ex

where a*=(a;, a;, af, af) and b*=(b{, b, by, bf) are given respectively
by

a*=(—0.645, —0.521, —0.241, —0.243)
and
b+*=(—0.039, —0.879, 0.278, —0.315)' .

The performance index of the controller (38) is 16.443. How act the

one cycle of the scheme in Fig. 1 is observed. Four cases are possible

to occur.

Case I: New controller is judged not better than the current con-
troller (38).

Case II: New controller is judged better than the current controller,

and,
Table 1 Result of the experiment by the
proposed procedure
Number of Mean improvement
Occurrence occurrence of the performance
Case I 122 0.0
Case II-1 110 —1.074
Case 1I-2 18 1.654
Case II-3 0 —
Total 250 —0.354
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II-1: New controller is really better than the current controller.
II-2: New controller can stabilize the plant but worse than the
current controller.
II-3: New controller cannot stabilize the plant.
The result of 250 simulation runs is summarized in Table 1, where &}
is fixed at 0.04.
This result is compared with a controller selection scheme which
is based on AIC, an information theoretic criterion which is introduced

Data collection under the operation of
the controller C(6*, ¢f) which is derived from

the current model of the plant M(w*, ¢*?)

Fitting of the model M(by, ., 3% .) by maximum
likelihood method, for each possible pair of (M, L)

Selection of (M, L) such that
AIC,=AIC (M, 1‘,)=Tizl AIC(M, L)

Computation of AIC,

AIG,=<AIC,?
yes

no

Design of the new controller C(dz 2

Set the controller C(8%, 6¢) equal to C(é,;, 2,d%)

l

Fig. 2 Adaptive control scheme based on AIC
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by Akaike [1] as a measure of the badness of the maximum likelihood
estimate of a model. It is easy to show that AIC of the fitted model
M(@y, ., % ) is given by

AIC (M, L)=Nlog &% ,+2(M+L+1),

where N denotes the length of the data. The AIC of the current
model M(w*, ¢*?) is given by

AIC,=Nlogs*t+2

where ¢** is the sample mean square error of the prediction of the
output of the plant. The scheme based on AIC is shown in Fig. 2.
The result by this scheme is summarized in Table 2. The data used
are same with Table 1. Apparently these results show the effective-
ness of our procedure. Table 2 shows that even if the model of the
plant is judged better than the current model, the derived controller
is not necessarily better than the current one. This is partly explained
by the fact that the number of the parameters of the optimal control-
ler of the plant (2) is less than the number of the parameters of the
plant. This implies that a controller which is designed on a poor model
of a plant sometimes shows a good performance. The procedure based
on AIC will change the controller and fail in this case, where our
scheme can avoid the useless change of the controller.

Table 2 Result of the experiment by AIC-procedure

Oceumence | Sumbeat | Mery mproremen
Case I 0
Case II-1 179 —1.087
Case II-2 66 4.995
Case II-3 5 ©

Total 250 .

7. Conclusion

A scheme of adaptive control which does not require a priori knowl-
edge of the plant structure is presented. This scheme is based on a
criterion which is a measure of the expected performance of the con-
troller which is designed on a fitted model of a plant to be controlled.
Though, the controller design is based on the certainty equivalence
principle, the scheme is ‘cautious’ (Tse and Athans [9]) as a whole
system. This feature is obtained from the fact that our criterion takes
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into account the possible error in model fitting.

The plant dealt in this paper is a time-invariant single-input-single-
output plant. However, it is easy to extend the result to multi-input-
multi-output plants. It is also expected that the scheme will applicable
to the slowly varying plants.
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Appendix

Design of the optimal controller
The plant (2) has an equivalent expression:

2, =0*2,_;+b¥u,_+&

¥:=(1,0,0,---,0)z,

(A-1)

where M,x Mymatrix @* and M,-vectors b* and & are defined by

a/;ky 1’ 0) ) 0)
a;k: O: 1,
@*: '* ) ,
(1590 1’ O
9 1
\ 0, Tty 0/

E*'_—(b;k) b;ky" ) bt*; 01' 0y 0)’
and
§k=(£k, 0; 0!' %y 0)’

respectively. The performance index (3) is equivalent to
. 1 &

(A-2) J=lmE [ 31 @Qzteui ) |
K—oo K ii=1

where Q is an M,X My-matrix defined by
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wll
Qz( :
If the performance index is given by
K
(A'3) JK =k§1 (&A/:ng'i_wuu:—l) s
the optimal control {u,, u,,---, u,_,} is calculated by the iteration (i=
1 yee e, K) :
Si=(w,+b*P,_jb*)*
T£=Pi—1—P¢—IE*SiE*’Pt-l
(A-4)

where P, is set equal to Q.

P¢=@*’T‘@*+Q

Ug-i=—SH¥ P, 0¥z« _;

(A-4) is obtained by applying the Dynamic

- Programming technique (see, for example, Boudarel et al. [4]) to the

plant (A-1) and the performance index (A-3). If the gain
gi= “Sié*'P i1 P*
converges to some limit gain gl.=(g¥, g¥,---, g¥%)" as 7 tends to the in-

finity, (A-2) is minimized by the control law

(A-5)

Ue=GoZs -

It is easy to show that 2z, can be expressed by

N
&

(1,0,

O,a;k’ ¢

ak.

0

O’a;k’a;k, .

0)
'90';';*1 b;k’b;ky "'ybt'

) a'j)kl*y 0’ b:’ik! A bt*r 0

(Y }
:’!k—l

Yi—ar+1
Wi—1

/

Then, (A-5) is equivalent to the control system:

where c¢*=(c}, ¢¥,---, ck) and d*=(d},---,

M‘
Up= El ChYk—mi1+ 121 d¥uy_y
m= =

L*—1

U—r1++1/

*..1) are given by
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g (m=1)

C,’f,= M*

J=Zm a’}kg;!e—m-rz (m=27 3,---, M*)

and
L*
d¥= 31 blgf.u i=12,.-.,L*-1)
j=l+1

respectively.
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