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Abstract

Let 2, v, S, T and W be independent random variables such that,
x~N(p, ad), y~Ny, py’), Sjo*~x(m), T|7'~y(n) and W/(as*+ p7")~x*(q),
where p, % 7 are unknown. For estimating p, consider the estimator
p=x+y—2x)aS/[S+cT+d{(y—x)*+W}], a,c,d>0. Note that the per-
formance of ; depends on r=pg7*/ag’, which is unknown. Assume g+n
=2 and let ay)=(n+q—1)/(m+2), ¢*=ca/pf, d*=da. Two main results
are:

i) for all >0, g has a variance smaller than that of z if a<
2 min (1, c*a,, d*a,) ;

ii) for all z=7,, where 7,>0 is arbitrary, z has a variance smaller
than that of x if a<2a, min [¢*7,/(1+7,), d*].

We also obtain some necessary conditions for ; to have a variance
smaller than that of x. It can be seen that with the exception of linked
block designs for any design belonging to the class called D,-class by
Shah [16], Yates-Rao estimator for recovery of interblock information
has the same form as that of ;. Hence, for such designs the above
results can be used to examine if Yates estimator is good i.e., better
than the intra-block estimator. Shah [16] resolved this question for
linked block designs, which include the symmetrical BIBD’s. Here, we
consider asymmetrical BIBD’s and show that Yates’ estimator is good for
all such designs listed in Fisher and Yates’ table [5], with two excep-
tions. For one of these two designs, we show that Yates’ estimator
is not uniformly better than the intra-block estimator.

1. Introduction

The problem of estimating the common mean of two normal dis-
tributions and the related problem of recovery of inter-block informa-
tion has been studied quite intensively in recent years. The reader can
find a comprehensive list of references in the recent works by Brown
and Cohen [2] and Khatri and Shah [9].
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In the analysis of any incomplete block design under an Eisenhart
model IIT (Eisenhart [3]), certain treatment contrasts admit two inde-
pendent unbiased estimates commonly known as intra-block and inter-
block estimators respectively. The problem commonly known as re-
covery of inter-block information seeks to combine these two estimators
and was first considered by Yates [20], [21]. The procedure, suggested
by Yates for special designs was later extended by Rao [11], [12] to
all incomplete block designs. It may be noted that the motivation be-
hind the recovery of inter-block information is not just to use the
inter-block information but to use it for improving upon the customary
intra-block estimator. It is therefore, desirable that the combined esti-
mator should be unbiased and have a variance which does not exceed
that of the intra-block estimator for any possible values of the un-
known variances of the individual estimators. From the work of Gray-
bill and Weeks [8], Graybill and Seshadri [7] and Shah [16], Yates-Rao
estimator is known to be unbiased but very little is known about its
variance.

While the properties of the Yates-Rao estimator remain largely
unexplored, the desire to construct estimators which would be uniformly
better than the intra-block estimator has lead to several modifications
of the Yates-Rao estimator. Of these, the earlier works of Graybill
and Deal [6], Seshadri [14], [15], Shah [16] and Stein [19] all ignored
some between block comparisons and moreover, their results did not
cover all incomplete block designs. The recent works by Brown and
Cohen [2] and Khatri and Shah [9] make use of all between block com-
parisons and while the scope of the former is limited to BIBD’s only,
the later applies to all incomplete block designs. The Yates-Rao pro-
cedure, which is still the most widely used, does utilize all between
block comparisons and up till now, the only known design for which
it fails to give uniform improvement over the intra-block estimator is
the symmetric BIBD with four treatments and three replications (see
Shah [16]). Simulation studies by El-shaarawi, Prentice and Shah [4]
as well as the numerical comparisons by Khatri and Shah [10] indicate
that for large designs as used in these studies, Yates-Rao estimator
compares favorably with that of Khatri and Shah.

In an earlier paper (Bhattacharya [1]), we considered a class of
estimators which unified the two classes proposed in Brown and Cohen
[2] and Khatri and Shah [9]. In this paper, we consider a further gen-
eralization which enables us to deal with the Yates-Rao estimator for
all Dj-class design (Shah [16]), with the exception of linked block de-
signs. Note that for linked block designs, the estimator proposed by
Shah [16] covers the Yates-Rao estimator and as shown there the Yates-
Rao estimator offers uniform improvement over the ordinary intra-block
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estimator iff the number of blocks is greater than five. Our main re-
sults are presented in Section 2 where z, ¥, S, T and W are independ-
ent random variables such that x~ N(g, ad®), y~ Ny, pr), Sja*~y*(m),
Tl ~x(n), W/(as*+p7*)~x*q) and p, ¢°, n* are unknown. For estimat-
ing g, we consider the estimator pg=z+(y—2x)aS/[S+cT+d{(y—x) '+
W1, a,c,d>0 and show that if ¢g+n=2, r=87'/as® and ay=(n+q—1)/
(m+2), then (i) for all =0, 2 has a variance smaller than that of «
if a<2min (1, caa,/B, daa,/B) and (ii) for all =7, where 7,>0 is arbi-
trary, ¢ has a variance smaller than that of x if

a§2a0 min (CTQ/(1+T0), d) .

We also obtain some necessary conditions for z to have a variance
smaller than that of x. In Section 3, we apply the above results to
asymmetrical BIBD’s and show that Yates estimator offers uniform
improvement over the intra-block estimator for all such designs listed
in Fisher and Yates tables, [5] with two exceptions. For one of these
two designs, we show that Yates estimator does not have the desired
property. The other design appears to be the only one for which this
property remains in doubt.

2. Main results

Let =, ¥, S, T, W be independent random variables where x~ N(g,
ad®), Yy~ N(g, By’), Sla*~x(m), T[p'~y(n) and W/(as*+py")~7x*(q). Let

(2.1) p=x+¢(y—x)
with
(2.2) é=aS/[S+cT+d{(y—x)*+W}]

where a, ¢, d>0 are constants to be suitably chosen.

In Section 8 we shall see that the estimator proposed by Yates
[20], [21] and generalized by Rao [11], [12] has the above form for all
D;-class designs (Shah [16]) with the exception of linked block designs.

Let W, be independent of S, T and W such that W,/(as®+ 7" ~75.
Let ¢* be the expression obtained by replacing (y—«)* in ¢ by W, and
let r=p7*/ag’. It was shown in Brown and Cohen [2] and in Khatri
and Shah [9] that v(z)<wv(x) for all values of (¢* 7?) iff

(2.3) (1+7) E¢**<2E ¢*

for every z>0. Let r=(1+7)¢*/a. It is easy to verify that (2.3) is
equivalent to a=<2E r/Er’. Thus we have

THEOREM 2.1. 18 uniformly better than x iff a=20 where o=
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infEr/E .

Since it is not easy to evaluate ¢ in all cases, we shall try to ob-
tain some non-trivial bounds for 6. Let z,=S/d*, 2z~ T/p*+(W,+W)/(ac®
+87") and u=(W,+W)/zad’+87"). It is easy to see that zi~y, 2~
Y2igssr U~P(g+3)/2, n/2) and that z,, z,, u are all independently distri-
buted. We shall write c*=ca/B, d*=da, y=7/(1+7) and shall rewrite
r in the form

(2.4) r=2z/[(1—7)z2+2zhu, 1)]

where h(u, r)=d*u+c*(1—u)y. Primes will denote derivations w.r.t. 7,
we shall attempt to obtain é*=inf f(u,y) where f(u,7)=E (r|u)/E (r*|u).

Clearly 6*<6 and hence it would be sufficient to have a<26* to ensure
v(p)<v(x). Direct computations from (2.4) show that

(2.5) r' =h(u, 1)[r*—c*Q—u)r/h(u, 1)]/h(u, 7) .
We note that f'=—g(w)h(u, 1)/h(u, ) E* (r*|u) where
gw)=2E (r|u) E (*|u)—c*1—u) E (r|u) E (r*|w)/m(u, 1)—E? (r*|u) .
We shall now prove the following lemma:
LemMA 2.1. If E(r'|uw)=0, then f'=<0.

Proor. If E (»'|u)=0, then E (#*|u)=c*(1—u)E (r|u)/h(u,1) and
hence g(u)=2E (r|u) E (r*|u)—2 E? (#*|4)=0 and hence f’'<0.

We recall that w is a beta variable which lies between 0 and 1.
Since r"=0 for u>0, it follows that 7 is a non-decreasing function of
7 and hence either (i) E ('|u)=0 for y€[0,1) or (ii) E ('|u)<0 for y
€ [0, 1] or (iii) there exists A(u) € (0, 1) such that E ('|u)<0 for 0=y <
Aw) and E (v'|u)=0 for a(u)=r<1.

Thus, if E ('|u)=0, by virtue of Lemma 2.1, we have inf f(u, y)=

limit f(u, y)=a.k(u, 1), where a,=(n+q—1)/(m+2) on the other hand if

E (' |u)<0, (2.5) gives f(u, y)>h(u, 1)/c*(1—u)>1.
Thus, we have ¢*=inf f(u, y)=min (1, ea,), where

e=inf h(u, 1)=min (c*, d*) .
In view of Theorem 2.1 we have thus proved

THEOREM 2.2. If a<2min(l, ea,), then p is uniformly better than x.

In applications of the estimator x to the problem of recovery of
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inter-block information one may have prior knowledge that r=r, where
7,>0 is a quantity which depends on the design parameters. Let p,
=7/(147). It is easy to show that r=<l/ez=r,, say, where z==2)/z
and ¢,=min (¢*y,, d*). Then, Er/Er*=ZE r/E (r,r). Using the same argu-
ments as employed by Brown and Cohen [2] in the proof of their The-
orem 2.1, we see that fy(u, 7)=E (r|u)/E (r,r|u) is non-increasing in r
and hence inf fy(u, 7)=limlit folu, y)=eq,. Clearly o=inf Er/E r*=inf

r — T ur

folu, 7)=e,. Hence recalling Theorem 2.1, we have

THEOREM 2.3. If a=2eq,, then p is better than x for all t>7,.

We now present some necessary conditions for v(z) to be less than
»(x). It can be seen that limit E r/E r’=e4a,, where e,=E (1/h(u, 1))/

=1

E (1/h¥u, 1)). Hence, d<ea, and Theorem 2.1 gives

THEOREM 2.4. If p has a variance uniformly smaller than that
of x, then we must have a=2e.q,.

Note that e,<e*, where e*=E h(u, 1)=d*(g+3)/(n+q+3)+c*n/(n+
q+3). Hence we have

COROLLARY 2.1. If i has a variance uniformly smaller than that
of x, then we must have a=2e*q,.

3. Applications

Consider a connected binary equireplicate incomplete block design.
Let b=number of blocks, k=number of plots per block, r=number of
replications. Let N (vxb) denote the incidence matrix of the design.
Let ¢;, i=1,---,v—1 denote the characteristic roots of NN'/k other
than » and p, denote the corresponding characteristic vector. Let rank
N=t, so that NN'/k has exactly t—1 positive characteristic roots ¢,
$yye vy dioy, all smaller than ». As shown in Roy and Shah [13], the
problem of estimating an arbitrary treatment contrast can be reduced
to that of estimating the canonical contrasts &,=pjf, where 8 (vX1)
stands for the vector of treatment effects in the linear model (Eisen-
hart model III). A set of minimal sufficient statistics for this problem
is given by x((v—1)x1), y((t—1)x1), S;, S, where x=(=;), x,=intra-
block estimate of £;, y=(y,), y.=inter-block estimate of ¢&,, S,=intra-
block error SS, and S;=inter-block error SS per plot. We also have:
Xyy Xy ooy Loty Y1, Yooy Y1, S1, S all independently distributed and
x,~N(;, ad)), y.~N(&, bai), Siai~y(e), S/oi~y'(e) where, si=intra-
block error variance, oi=inter-block error variance per plot, ¢ =d.f.
for intra-block error, e,=d.f. for inter-block error=b—¢, a,=1/(r—¢,)
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and b,=1/¢;.

In the following we shall consider only D,-class designs (Shah [16]).
Note that for such designs ¢, ¢»,---, ¢, are all equal and let ¢ de-
note their common value. Then ay, a,,---, a,_; are all equal to 1/(r—¢)
and by, b;,---, b,_; are all equal to 1/¢. Now, the Yates-Rao estimator
of & can be written as

&=, + (¥ —2)S/(c.S,+e:S;+¢:Ss)

where
Sa=:Z: (yi—xi)z , Q:l—(’l)-—k)(’r—(p)/g[m(fr_]_) ,

c;=ek(r—¢)/gv(r—1) and c,=ek(r—¢)lor(r—1).

We shall exclude the linked block designs so that we shall have ¢, ¢,, ¢;
all positive. Without loss of generality let us take =1 and make the
following match ups with the terms used in Section 2: z,~z, y,~v¥,
S;~8, S;~T, S;~W, &~p, a,~0, oy~7, ay~a, bj~B, e~m, e;~n, t—
2~q.

Then él matches up with g with a=1/c;,, c=cyfe;, d=cyfc;. Note
that 7%/¢’>1 and hence r=b,ja,=(r—¢)/p=1,, say. Then y,=r,/(1+7,)
=1—¢/r. Note also that d*=ek(r—¢)/vr(r—1)e;=c*y, and a,=(b—3)/(e,
+2). From Theorem 2.3 we then have

THEOREM 8.1. ¢, is uniformly better than x, if
v=ek(r—¢)(b—3)[vr(r—1)(e,+2)=1/2 .

Let uy=1—g¢u/r, where u has a beta distribution with parameters
(t+1)/2 and (b—1t)/2. Let ew=E (1juy)/E (1/uk) and ¢, =c*c,. Note that
h(u, 1)=c4,uy. Then Theorem 2.4 gives

THEOREM 3.2. If é, 18 uniformly better than x,, then we must have
vx = Cxlix(b—3)/(e,+2)21/2 .

Let e**=E uy,=1—¢(t+1)/r(b+1). Then, in the same way as Corol-
lary 2.1 was deduced from Theorem 2.4, we obtain from Theorem 3.2,

COROLLARY 3.1. If & is uniformly better than x,, then we must
have

V*=ce**(b—3)/(e,+2)=1/2 .

For BIBD’s ¢=(r—2a)/k where A=number of blocks in which any
given pair of treatments occur together. Then r—¢=4v/k and we have
v=eA(b—3)/r(r—1)(e,+2). Values of v were calculated for all asymmet-
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rical BIBD’s listed in Fisher-Yates tables [5] and turned out to be greater
than 1/2 in all cases with two exceptions. The exceptional designs are
(1) v=4, b=6, k=2 and (2) v=>5, b=10, k=2. For the first one v* was
calculated and found to be less than 1/2. For the second design, the
value of v* turned out to be greater than 1/2 and hence v, was com-
puted by numerical methods but this also turned out to be greater
than 1/2.

Hence we have the result:

For all asymmetrical BIBD’s listed in Fisher-Yates tables [5] with
the two exceptions mentioned earlier, Yates estimator is uniformly bet-
ter than the intra-block estimator. For the first of the two exceptional
designs, Yates estimator is not uniformly better then the intra-block
estimater. For the other exceptional design, which fails to satisfy the
sufficient condition in Theorem 3.1 but satisfies the necessary condition
in Theorem 3.2, no conclusion could be reached.

It should be remarked that in the above analysis we have considered
the untruncated form of the Yates estimator. From the work of Shah
[18] it is known that the truncated estimator is uniformly better than
the untruncated estimator. It can also be verified that the necessary
condition in Theorem 3.2 is valid also for the truncated estimator.
Hence our conclusions above hold also for the truncated form of the
Yates estimator.
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