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Abstract

Let X,, X,,--- be a strictly stationary ¢-mixing sequence of r.v.’s
with a common continuous c¢df F. Let 6 be a location parameter of F.
We prove the asymptotic normality of a class of Hodges-Lehmann esti-
mators of ¢ under various regularity conditions on the mixing number
¢ and the underlying F. We also establish the asymptotic linearity of
signed rank statistics in the parameter 6.

Our results also enable us to study the effect of ¢-dependence on
the asymptotic power of signed rank tests for testing H,:6=0 against
H,:0=0m""", 6,+0.

Finally these results are shown to remain valid for strongly mixing
processes {X;} also.

1. Summary and introduction

Let X,,Xz,'-- be a sequence of r.v.’s with the common cdf F.
Let 6 be a location parameter of F. Using a class of signed rank
statistics based on {X;—6, 1<i=n}, Hodges and Lehmann {2] proposed

a class of estimators of #—called H-L estimators é,, here—when {X;} are

iid. Among other things, they proved the asymptotic normality of é,
when {X;} are iid F and F satisfies some mild regularity conditions.
If {X,} are dependent the definition of 6, can still be given the same
way as is done in (2.5) of [2] (see Theorem 3.3 below), although the
condition (D) of [2] may not be satisfied by the underlying signed rank
statistics.

In the present paper we prove the asymptotic normality of a class
of H-L estimators (5,. when the underlying observations are strictly
stationary and ¢-mixing (see (2.1) below) such that the joint distribu-
tion of (Xi,---, X,) is continuous and the common cdf F' is symmetric
and absolutely continuous with bounded uniformly continuous density f.
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The class of estimators is generated by bounded, nondecreasing score
functions ¢ such that ¢(1/2)=0.

We obtain this result by first studying the empirical cumulative
based on signed ranks of {X,—6n™"?, 1<i<n}, |#|<a. In Theorem 3.1
below the weak convergence of these empirical cumulatives to a con-
tinuous Gaussian process for each fixed 6 is established. In the same
theorem we also establish asymptotic uniform linearity of these em-
pirical cumulatives in |#|<a in probability. Both these results are
established when F' is not symmetric. Using these results and the fact
that a signed rank statistic corresponding to general ¢ is a stochastic
integral of these empirical cumulatives, Theorem 3.2 gives asymptotic
uniform linearity of a class of signed rank statistics in [#|<a in prob-
ability. Lemma 3.5 establishes the asymptotic normality of signed rank
statistics under the hypothesis of symmetry of F. The results of Theo-

rem 3.2 and Lemma 3.5 entail the asymptotic normality of 4, in usual
fashion.

The results of Theorem 3.2 and Lemma 3.5 could also be used to
study the effect of ¢-dependence not only on the asymptotic level of
signed rank tests for testing the hypothesis §=0 (in the spirit of [4])
but also on the asymptotic power of these tests against the sequence
of alternatives #=6,n"'%. As should be expected, it turns out if F is
symmetric (and has some other properties) the effect of ¢-dependence
on the power can be measured by the asymptotic variance alone (see
Section 4 below). It may be noted that Theorem 3.1 can also be used
to establish a version of Theorem 3.2 when F' is not symmetriec.

Finally let us mention that our results remain valid for any se-
quence of r.v.’s {X;} for which Lemmas 2.1 and 3.5 can be proved.

2. Notations, assumptions and preliminaries

Let X, X,,--- be a sequence of strictly stationary r.v.’s defined
on a probability space (2, A, P). Let B(X;, X;,---, X,,) and B( X1, )
be Borel o-fields generated by the indicated r.v.’s. The sequence {X}
is such that for each m=1 and n=1 and for every

AEQ(X[,"',Xm)v BEQ(XmHH"')
(2.1) | P(AB)— P(A)P(B)| < ¢(n)P(A)

where ¢ is a function on integers such that ¢(n) | 0 as n 1 co.
C: Furthermore let {X;} be such that the joint distribution of (X,
X;,+-+, X,) is continuous.

The condition C in particular implies that their marginal cdf F is
continuous. Let ¢ be the location parameter of this distribution. Since
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our problem is to obtain asymptotic distribution of H-L estimator of #
and since signed rank statistics are invariant under location change,
we may without loss of generality assume that the true location param-
eter is 0. All the probabilities in the sequel will be computed under
this additional assumption unless otherwise specified. Define, for ¢ fixed
in an interval |¢|<Za,

(2.2) H(x)=F(x)—F(—x) , ’ 0Z2x<o0; =0, —co<2<0,
w(t, O)=F(H'(t)+6)—F() , 0=st=1,

(2.3)

plt, 0)=F(@)—F(—H™'(t)+6), 0=t=1,
and
(2.4) ut, O)=m(t, 0)—m, 0), 0st=1.

Let R,(6) be the rank of |X;—6¢| among {|X,—0|, j=1,---,n} for each
fixed 6. Introduce

(2.5) 8.t, )=n" 3 (RO)Stw)s(X,—0),  0sts]

with s(z)=I(x=0)—I(z<0) and I(A)=indicator of the set A.
Let ¢ be a function on [0, 1] and let J(u)=¢((u+1)/2), 0=su=1.

(2.6) 8.7, )=n"" 3} J<-1?;(L—”l)s()g—e)= S: J(t)dS.(t, 0) .

To standardize things we introduce

T.(t, 0)=n (Sy(t, 6)—p(t, 0)), 0=<t<1

@.m
TAJ, O)=n(S,(J, 0)— pu®))
with
(2:8) #O)={, JOlm(t, 0)—pmtt, 0)

To get a different representation of (2.7) and (2.5) we introduce for
|#|<an~'? and 0<t<1

Wit, 0)=n" 3} [HO0< X,—0< H™(0) —pu(t, O)]
(2.9)
Wit, 0)=n"" 33 [I(— H () < Xi—0:0)—puft, )],
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V(t, 6)=Wi(t, 6)—Wy(t, 6)

=07 3 (1| X~ 0| S H - (O)s(Xi—6)— p(t, )]
(2.10) B
W(t: 0) = Wl(ts 0) + Wz(t! 0)

=1 g (1 X:—01< H™') — e, 6)—pult, O)] -

In all the above definitions and in the sequel for any distribution fune-
tion G, G7'(t)=inf {x; G(x)=t} unless otherwise specified. Next let F,
denote the usual empirical cumulative of {X;, i=1,---,n}. Let

(2.11) H(x)=F (x+6n"'"")—F (—2x+06n""%) , x=0.
Then wp 1 we have for all 0<t<1, |¢|<a

(2.12) T.(t, 00~ =V(H(Hz'(t)), 0n~""?)
+n [ H(HZ'(2)), 0n7") — p(t, 0n7'7)]

Our basic objective is to obtain asymptotic normality of H-L esti-
mators when original r.v.’s satisfy (2.1). In order to achieve this goal
we first obtain weak convergence of T,(t, fn "%, 0<t<1 to a continu-
ous Gaussian process and then using this result and the representation
(2.6) we achieve asymptotic normality of T,(J, #n "*) by establishing
asymptotic linearity of T,(J, 6n %) for |#|<a. Using asymptotic line-
arity one gets then asymptotic normality of H-L estimator. Of course
all this is true under some conditions on the underlying distribution
function and score function ¢.

About F we assume that FH' is uniformly differentiable which
implies that there exists functions g,, j=1,2, such that for every
K>0

(2.13) lim  sup n'*|p(t, 0)—pu,(s, 0)—(t—s8)i(s)|=0 .

n—oo |[t—§|SKn—-1/2

Note that if F' is symmetric about the origin then F(H™!(t))=(t+1)/2,
#;=1/2, j=1,2. In many of the following statements we will not as-
sume that F' is symmetric about the origin. However we will need F
to have density f such that '

(2.14) f is bounded and uniformly continuous.

In this case ju=f(H)/[f(H)+f(—H™M), m=1—p,.
About the score function ¢ we assume

(2.15) (i) ¢4, (ii) ¢(1/2)=0, (iii) ¢ is bounded .

As to the solution of the problem, (2.12) gives clear idea as to
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what is needed for the proof of the weak convergence of T,(t, on='?),
0=t=<1. Also from the definitions of W;,, W, and V it is clear that
there is obvious relation between these entities and ordinary empirical
cumulatives. Let us define

(2.16) Z,(t)=n'"*[F(F~(t)—t], 0=st=1.
Then wp 1 for all 0<¢<1 and all |#|<a
Wit, 0)=Z(F(H™'(t)+0))—Z,(F(6))  and
Wi, 0)=Z.(F(0))— Z(F(— H'(t)+0)) .

(2.17)

From [1] we recall the following

LEMMA 2.1. (=Theorem 22.1 of [1])
If {X.} are strictly stationary o-mizing such that

(2.18) ) nlpt(m) < oo
n=1

and if F is continuous cdf then
(2.19) Z,=pZ
where Z is a continuous Gaussian process on [0, 1] with EZ=0 and co-
variance kernel given by
(2.20) K{t, s):t/\s+él Cov [Yi(2), Y,m(s)]—+-ki‘:}l Cov [Y(8), Yiuu()]
0<t, s<1
where
Y,O)=[I(F(X)<t)—t], j=1, 0<t<1.
The absolute series in (2.20) converges. Comsequently for every ¢>0

(2.21) limHP[lsuP | Z,(t)— Z,(s) | >¢]=0 .
8—0 n—oo t—s8|<é
In the sequel we will say a random sequence “Y,=o0,(1)” iff “Y,—,0”
as n—oo. Always limit will be taken when n— oo unless otherwise
stated. Furthermore ||-|| denotes the sup norm taken over all 0<t<1
and all |#|<a. Finally @ will be cdf of standard normal r.v.

3. Some weak convergence results and asymptotic normality of H-L
estimator

In this section we first prove asymptotic linearity of S,(¢, 6n~'?) in
|@|<a in probability uniformly in 0<¢<1. Using this and (2.6) one
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gets similar results for S,(J, fn~"?), |#|<a. Then these results together
with asymptotic normality of S,(J, 0) in a usual fashion lead to asymp-

totic normality of 6,—the H-L estimator as defined in [2]. We begin
with

LEMMA 3.1. Under the condition (2.1) with 3\ ¢(n)<co and con-
tinuity of F we have "
(3.1 | HH' () —tl|=0,(1)
where H,, is given by (2.11).

ProOF. We have

(3.2) || H(Hz'(®)—t||<sup | Hu(z)—Hi(z)|+sup | Hy(z)— H(x)|+0(n™)

where H,(:)=H(-+6n""?). Since F is continuous, clearly then

(3.3 sup sup | Hi(x)— H(z)|—0 .

On the other hand since H,(:)=F,(-+0n %) —F,(—-+6n""?), to con-
clude (3.1) it will be enough to prove

3.4) F(x+0n"")—F(z+0n""2)=0,1)

for each fixed —co<z<+oo and each fixed |#|<a because both F, and
F are monotone bounded functions of z and 4.
To prove (3.4) write

F(x+0n"")—F(z+0n~")=n" iz @
a=IX,Lx+6n")—F(x+0n'"), 1Z1=n.
Now apply Lemma 1, p. 170 of [1] to &, aiy, With r=2=s to get
(3.5 |Cov (ay, ayy1) | S2¢"*()) El=27'(1) ,  i21.

Here we also used Ex’<1/4. Using stationarity, (3.5) above and the
fact that vn=1, Ego‘/’(i)gtf‘_, ¢(1), one gets
i=1 =1

(8.6) Var (n“ iﬁ‘, a,) =n"! Ea}+2n"’:_§_‘: (n—1) Cov (ay, a;41)
=1 =1
afl S ]
< 4360

which in view of the fact that i (1)< oo yield (8.4). The proof of
i=1 !

the lemma is terminated.
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For any process X(-, ) let
o(X, d)=sup sup |X(t, In ") —X(s, On"'7?)| .

lolsa l-sisd
LEMMA 3.2. Under the conditions of Lemma 2.1
3.7  o(W;,0)=01) a8 n—oo and then 6—0, j=1,2.
Hence tn view of (2.10)
3.8) o(W,0)=0,1), oV, 5)=0,1)
as n—oo and then 6—0.
PrOOF. The proof of (3.7) follows from (2.17), the fact that
IF(H™ (@) +0n""")—F(H™(¢)||—0,
| F(@n~")—F(0)||—0,
and F(—H™) and FH™' are uniformly continuous and (2.21).
LEMMA 3.3. Under the conditions of Lemma 2.1
(3.10) [[Wi(t, 0n~'%)—Wi(t, 0)||=0,1) , ji=12.
Hence in view of (2.10)
W, on~'")— WL, 0)||=0,1)  and
IV(E, 0n717) = V{2, 0)||=0,(1) .
Proor. The proof again follows from (8.9), (2.17) and (2.21).

(3.9)

(3.11)

LEMMA 3.4. Under the conditions of Lemma 2.1 and (2.14)

(3.12) W H(H5'(t))—t]= —W(¢, 0)—6b(¢, f)+o0,(1)
uniformly in |0|<a and 0<t<1. Here
(3.13) b, N=FHTE)—f(—H'@F), 0=st=<1.

ProOF. We have wp 1 for all 0<t<1, |6|<a

(B.14)  n[H(H'(8)—t]=—W(H(H'{?)), on~'")
—n'*[H,(Hz'(t))— H(H3'(8)]+0(n ")

where H/(-)=H(-+6n"'").
Now observe that since f is bounded, we have

(3.15) n'2 || H(H () —t—0n"""b(¢, f)||—0 .

Hence, uniformly in 0=t<1, |0|<a



436 HIRA LAL KOUL

(3.16) n [ H(H, (t))— H(H;'(t))]
=n""[H(H(H(5'(t))))— H(H4'(t))]
=0b(H(H,'(t)), f)+o0,(1)
=6b(t, f)+o,1) .

The last equality follows from the uniform continuity of f and Lemma
3.1.
Next from (8.1), (8.8) and (3.11) we have

B.17)  W(HHZ(?)), on-)=W(t, o) +0,(1)=W(t, 0)+0,(1)

uniformly in 0<¢<1 and |#|<a. Note that condition (2.18) implies the
condition of Lemma 3.1. Combining (3.17) with (3.16) and (3.14) one
has (3.12).

THEOREM 3.1. Let X;, X;,--- be a strictly stationary sequence of
r..’s satisfying (2.1) and (2.18) and C. Let F have pdf ‘f’ such that
(2.14) is satisfied and let p/(-,0), =1, 2 satisfy (2.13). Then

(3.18) | To(t, o0~ —V(t, 0)+ p(t) {WT(E, 0)+6b(¢, )} =0,(1)
with

(3.19) pO=b¢t, NIFHTO)+S(—HT@E)], 0st=1.
Consequently

(3-20) | Tt, 0n%)— T(t, 0)+0p(B)b(E, S)|[=0,1) .
Furthermore

(3.21) (Tu(t, on2), 0<t<1}=>,{Y(t, 0), 0=t=1}

where Y(-, 8) 18 a continuous Gaussian process for each 6 and Y(t, -) is
limear for each t with

(3.22) E (Y(-, 0)=—06p(-)b(-, 1),
and

(8.23) C(t, s)=Cov [Y(t, 0), Y{(s, 6)]

0t, s<1.

This limit always exists. Im particular if F is symmetric about the
ortgin thenm

(3.24) || Tu(t, 6n~%)— T, (¢, 0)||=0,(1)
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and
(8.25) {T.(¢, on~"?), 0<t<1, |0|=<a}=,{Y(t, 0), 0=5t<1}
with C(t, s) given by (8.30) below.

PROOF. To begin with let us observe that F' symmetric about the
origin implies b(-, f)=0 and hence (3.24) and (3.25) follow from (3.20)
and (3.21) respectively. And (8.20) follows from (3.18) when applied to
T.(-, 0) processes.

In order to prove (3.18) we recall the decomposition (2.12). Now
in view of (3.1), (3.8) and (3.11) we have

(3.26) V(H(H3'(2)), 00~ =V(t, 0n~"%) +0,(1)=V(¢, 0)+0,(1)

uniformly in all 0<¢<1 and |#|<a. Furthermore observe that in view
of (2.13) and f being uniformly continuous and bounded we have

(3.27) sup  sup w'|p(t, OnT)—py(s, On)—(t—s)pr,(s) [ -0 ,

|0|<a |t—s|SKn—1/2
j=12,

On the other hand in view of Lemmas 3.4, 2.1, and (2.17) we have for
every ¢>0 there exists K, and n, 3 n=n.=

(3.28) P | HHZ'®)—tl|SKn |z1l—¢.
Using (3.28), (3.27) and Lemma 3.4 again one has
(3.29) nu(H(H'()), on~'")—pu(t, 6)]= —[W(2, 0)+6b(¢, £))ix(t)+o0,(1)

uniformly in |¢|<a, 0=<t=<1. Recall that g=p—p from (2.4). Com-
bining (3.29) with (3.26) and (2.12) one has (3.18).

Next to prove (3.21) we observe that in view of (2.17) and (2.19)
and uniform continuity of FH™' we have

V(-, 0)— () [W(2, 0)+6b(-, f)]

=[Wi(-, 0) =W+, 0)]—p(-) [Wi(-, 0)+W(+, 0)]—04(-)b(+, f)

=(—p(-NZ(FH™'(-))+ QA+ ) ZAF(—H(-)))
—2Z,(F(0))—6p(-)o(+, f)

=p(L—p(-DZFH())+Q+p(- DZ(F(—H(+)))
—2Z(F(0))—6p(-)b(-, f)

=Y(-,0).

Clearly then Y(-,6) is a continuous Gaussian process for each # and

Y(t, -) is linear for each fixed t. Moreover C(¢, s) is the covariance
function and the fact that the limit in (8.23) exists is due to the fact
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that the lim cov. of Y{(-,0) can be expressed as a transform of K
function of (2.20).

To verify (3.25) one observes that F' symmetric about the origin
implies that

Fo=%, rao=L,  rero=15t

and j(t)=0 .

In this case

(3:30)  C(t, 9)=Cov [2(1E1)+2( 1-t) pz(1),
—8

2(35h)+2(35%)-27(5)]

) 2K< 1+t 1)

t+1 s+1> <+1 1—
K< 7 3 )TEK 2 2’2
1—t 1+s> (1——t 1—s>_2 (1—t l)
+K< 2’ 2 +K 2’ 2 K 2 2
1 s+1 1 1i—s 11
—2K<—, )-21{ 1 ) 4K( )
23 )T T2

2 2
The proof is terminated.

COROLLARY 3.1. If the conditions of the above theorem are satisfied
and F is symmetric about the origin then

(3.31) n'2||S,(t, On~'*)—8,(t, 0)—On""*q(t)[|=0,(1) ,
where
(3.32) q)=2[f(H't)—f(0)], O0=t<1.

ProOF. The proof follows from (3.24) and the fact that
(3.33) n'2|| p(t, 60— p(t, 0)—0n~q(t)||—0 .
Next we state and prove asymptotic linearity of sign rank statistics.

THEOREM 3.2. Under the conditions of Theorem 3.1 and symmetry
of F about the origin and (2.15) (ii), (iii) we have

(3.34) sup 02| Su(d, 00~ = S(J, 0)+n709(J) | =0,(1)
with

(3.35) a(J)=2 S: FHT = S: a)dJE)+270)I() .
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ProoF. From (2.6), after integrating by parts we have wp 1

8.7, 0)=8.(L, 0| 5.6, 070, 1015a.

Note that S,(1, §)=n"" E, s(X,—0)=[1—2F,6)] wp 1, |#|<a. Hence, for
every |0|<a, we have (using J(0)=0)
WAIST, 0n77) = S.(J, 0)+n~6q()]
=2y [F,(0) — Fo(on™")]
— [ 1Su(t, 6n77) = S,(¢, 0)—n™0g(1)dI(E)+20 £ (O)I()
=JWAZ(FO)— Z(F O~ )]+ 2J Ui FO)— F(on )]
+OFOIW)—n" | [S,(t, 0n7H)—S,(t, 0)—n~bq(e)]dT(t)
=o(1) .

In the above, the last equality follows from (3.31), (2.21), the fact that
F has bounded density and the fact that J is bounded. The proof is
terminated.
LEMMA 3.5. If {X.} are strictly stationary and ¢-mixing satisfying
condition C and 3 P (m)<oco and F is symmetric about the origin and
n=1
J s bounded then

(3.36) }g{} P [n'2S,(J, 0)<x0] =D(x) , —oo << +oo
where

(3.37) =0} +2 3 Cov [¥;, ¥iuil 03=S: JH(udw
and

Vi=JH( X)X, kz1.
The series in (3.37) is absolutely convergent.

PROOF. Since F' symmetric=y(-,0)=0 and therefore from (2.12)
we have

(3.38) T, O=VHH'O)=V()+0(1), 0st=1

by Lemma 3.1 applied with §=0.
Again because of symmetry of F' and because J is bounded we have
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(3.39) W8], 0)=Ti(J, 0)= S: J(H)ATLt, 0)
- S: J@O)AV(E)+o 1)  (from (3.38)),

=n 31 J(H( X D)s(X)+o0,(1)
=n"28,+0,(1) .

But S, is the sum of strictly stationary o-mixing bounded r.v.’s and
from Theorem 20.1 of [1] it follows that

L(n128,)— N(0, ¢%)
where ¢*=lim Var (n“/zﬁ,,) and is given by (8.37) above. This and (3.39)
proves (3.36). Convergence of absolute series in (3.37) follows from
(3.6) and the assumption that i ¢"Y(n)<oo. The proof is terminated.
n=1

Next, let én be the solution of the equation S,(J,4)=0. Since ¢
is 4 and ¢(1/2)=0, we have J=0 and 4 and it may be verified that

S,(J, 8) is monotone decreasing function of # and hence 6, could be de-
fined as average of the last ¢ for which S,(J, #)=0 and the first ¢ for
which S,(J, )<0. We have

THEOREM 3.3. Under the conditions of Theorem 3.2 we have

(3.40) P(n0,—0)<zr)—>0(x), —oo<g< +oo
where
(3.41) r=qY(J)s

and P, indicates that probability is computed when 8 is the true param-
eter.

PRrROOF. The proof follows from Lemma 3.5, Theorem 3.2, the shift
invariance property of 4, and the condition C in the usual fashion.

4. Some remarks

1. Combining Theorem 3.2 and Lemma 3.5 we observe that the
power of the level a test that rejects the hypothesis #=0 against the
sequence of alternatives §=6,n"'%, 6,>0, when n'2S,(J, 6,n~"*)< —k, ap-
proaches to

(4.1) 1—-0(k,—0q(J)s™)

where by level we mean the “asymptotic level.” In the case of in-
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dependence we have the power tending to
(4.2) 1—0(k.—0,q(J)o7'71)

where 7,=0,67'. Thus the effect of dependence on the power is just
measured by z,. Observe that if X,’s are independent then r,=1.

2. In [3] Gastwirth and Rubin proved the weak convergence of Z,
processes to a continuous Gaussian process when {X;} are strictly sta-
tionary strongly mixing under various conditions on the mixing number.
Since this kind of result is what lead us up to the results of Section 3
above (except for Lemma 3.1 which could be proved from Lemma 2.1
also) we can conclude that the results of Section 3 of this paper re-
main valid under Gastwirth and Rubin conditions of [3] on X;’s. Our
results are therefore also valid for their strictly stationary first order
autoregressive processes. In [3] they have demonstrated that the first
order autoregressive process is not ¢-mixing in general but is strongly
mixing.

3. Recently Sen [5] relaxed the conditions under which Lemma 2.1
above could be proved. He proved Lemma 2.1 with (2.18) replaced to

i ng'(n)<oo. Consequently the results of Section 3 above are valid
n=1

under this weaker condition also.

4. Estimation of location parameter in two sample problem where
one observes two independent sequences of strictly stationary processes
both of which are either strongly mixing satisfying conditions of [3]
or ¢-mixing satisfying the condition given above can be handled in the
same fashion similar to above.
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