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1. Introduction

Test statistics have been proposed in multivariate analysis concerned
with the latent roots of certain matrix variates. In this paper we shall
consider the distributions related to the latent roots of an m XxXm com-
plex Wishart matrix A proportional to sample covariance matrix on the
basis of observations drawn from a complex multivariate normal pop-
ulation. In Section 3 we shall derive the distributions of the maximum
latent root 2, and the minimum latent root 2, of A and in Section 4 that
of the range R defined such that R=2,1+24)"'—2.1+2,)! and in Sec-
tion 5 those of the trace A and the trace A(l,+A)™!. All the repre-
sentation in the three cases stated above are power series forms.

2. Evaluation of integrals

Here we shall describe summarily the useful integrals in the follow-
ing sections.

THEOREM 1. Let A be a positive definite Hermitian matriz of mXxXm
and let B be any Hermitian matrix of mXm, then

(1) S |AlC(AB)dA

I,>A4>zl,,
— (1‘:’";(’1'1’&))2 C.(B mn_2m2+k — 11 — )™+ > (ﬁ) [m],
7. (2m) (B) 2 (=D(l—z)""3 y ) eml
where n is an integer such that n=m and x is a momnegative number

and C(C) is a zonal polynomial of a Hermitian matrixz C which i3 a
symmetric function of the latent roots of C corresponding to the partition
e=k, ko0, k), B2k = - 2k, of an integer k and the partition k, 18
denoted by r,=(ki+n—m, ky+n—m,---, k,+n—m) and the constants

(': >’s are one’s in the equality

357



358 FUMIKO HIRAKAWA
C(I —4) o[ £ \C(A)

2 1 C(4)

(2) iR 5D C( )c,(Im)

and multivariate gamma functions are
[(@)=nmom-vr f[ [a—i+1)
and generalized bimomial coefficients are
=] @—i+1y,, (@=ala+1)--@+n—1), @=1

ProoF. We shall put the left-hand side of (1) to be f(B). Then
f(B) is invariant under the transformation such that B—UBU* where
U is a unitary matrix normalized to make its volume unity. Hence
replacing B by UBU* and integrating with respect to U over the uni-
tary group U(m), it follows that

_CB) g
(3) B =g D ) -

On the other hand, we shall set B=1I, in the left-hand side of (1) and
perform the transformation A=1I,—C. Then noting that

(4) | DICD)= C((’m))C( D)
where n is arbitrary nonnegative integer and x;=(k1+n, ke, k,
+n), we get
_Cla)
(5) f( M) C (Im) S(l-—z)lm>c>u '1(1 C)dC

Substituting (2) in the above expression and lntegratmg term by term
with the help of (8) in Sugiyama [9] that

|A ]""‘C’,(AB)dA= PT(m)Fm(t) [£]. é,(B gt

6
(6) Szl>4>0 r,t+m) [E+m].

we have

(Fm))? (1—gym+ 3y () L.
(1) fdo)= 7 )C(Im) 2 “(-1-9) 2( )[Zm]

Hence from (3) and (7) we finish the proof.
THEOREM 2. Let A=diag (4, 4, - -, 4,), then

(8) | 4P="CA) TT (=2, TT da,

Szl>12>--->1m>xl—t
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__ (Tum)yT(m+2)I(2m+1)
™™D (9m 4+ 1) (I'(m))* [ (m+2)
e e (8 [ Cldn)
—1)X(t/a, = ,
z (FDE) ?(J[Zm]v CuI,)
Az=t=0,

C‘(Im)xinn‘l'k"l

where fm_1=diag (0,1,---,1) and the other notations are the same as in
Theorem 1.

ProOF. Put the left-hand side of (8) to be f(4,t). Then, trans-
forming such that 4,=21(1-t), 1=2,3,---, m, we get using (4)

(9)  fla, ty=SeIn) zunsa=s | 4,[°C. (I, — 4,)

C',I(Im) St/21>tm>tm_1>--->z3>o
* T[ (ti'"tj)2 T[ dti
i<j i=3

where 4,=diag (¢, -, t,) and /f,:diag 0, t,---,t,). Using the results
that

C(4)=0 for k,#0

C(d) _ Cld)  gor 1 —g

és(jm-l) éx'(I —1)

where «'=(k,, k,,-- -, k._,) in the series (2) for C’,(I,,,—/i,)/a(lm) and sub-
stituting it in the integrand of (9) and further integrating term by term
with respect to t;’s, i=2,3,---, m, by the application of (6), we get

(D i(m =) (ML) & 7\ gmnsect
1 b r CA’ m/ AL
( 0) f(Z t) z(m—l)(m—Z)rm_l(zm) (I )2
TR v n (2} 45

Furthermore in consideration that

fm—l(a) — f'm(a'l' 1)

' Ia+1)
and
[al.=][al., for 1,=0
where v=(, by, -+, ln), L=L=---=l,, (10) is reformulated such that

(Fa(m)PTn(m +2)['(2m+1)
7™ (2m 4+ 1) (I (m)) (m +-2)

(11) S, )= C',(Im)l'{‘"*"“
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2 " (=AY z()”{;;]” %(f;_)l)’

which is the desired result.

3. The distributions of the maximum latent root and the minimum
latent root

Let A be a positive definite Hermitian matrix distributed as W,.(n, 3),
that is, having the density function such as

1
@ Fizr®

Then the density function of the latent roots i’s, A=2=:--=2,=0 of
A is given by

tr (—21A) A", ((5.0) of Goodman [3]).

m(m—1)

(13) —
Lp(m)Lp(n) | 2]

4P T @=a | etr (-3 UaUMU
i<y Um)

where A=diag (4, 4;,--, 4,). Hence making the transformation such
that 2,=b,1-0b))", i=1,2,---, m, we get the density function of b,’s
as follows

71_.m(m—l)

n—m If(z—l)bl(Ab)
- - b,—b;)* Sl A
Lo(m)Fo(m) | 2T 4P T o0y 23 kICA(1,)
where A,=diag (b, b,,- - -, b,) by using the generating function for gen-
eralized Laguerre polynomials in complex variate case, that is, (16) of
Hayakawa [4]

(14)

e egr— s s E(S)EAZ)
1) |-z SU( etr (~SUZI-2)"UNaU=3 5 = A=

lIzj<1.

Hence with the use of (6) in (14) the c.d.f. of the maximum latent
root b, is obtained in the following way

— fm(m) [n]: Tn —1\pemn+k
1) Pr(b=a) fm(m+n)|2|"ggk![m+n],L'(2 it

Secondly making the use of (1) in (14), the c.d.f. of the minimum latent
root b, is gotten as follows

17 Pr (b, <z)=1—__ Ln(m)’ Y
an r(b.=2) (Zm)F(n)IZ'I"%"; k!

mn— 1n2

P O A
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By summarizing the above discussed results, we have the following
theorem.

THEOREM 3. Let A be distributed as (12), then the c.d.f.’s of the
maximum latent root b, and the minimum latent root b, of A(L,+A)™
are given by (16) and (17) respectively.

Here it should be noticed that the c.d.f. of the maximum latent
root is immediately obtained from (16) and that of the minimum latent
root of A from (17) because Pr (4,=<z)=Pr (b,<zx(1+2)™"), 1=1,2,---, m

When we set =1 in (16), the following corollary is easily shown.

COROLLARY 1.

n.L:E™) _ Talm+n) 51
(18) IPIE T s o LU

4. The distribution of R

We shall define the range R such that R=4(1+4)"'—2,1+2,)"
where s, A=2,=---=2,=0, are the latent roots of A distributed
according to (12). Then the c.d.f. of R is obtained by calculating
(19) Pr(R<t)=| Pr(b:zbz - 2bazb—t[b)AF ) .

By the way, for ¢=b,=0, Pr (b;=b,=---=b,=b—t|b)=1 and for b=
t=0, we get with the help of (8) in (14)

(20) Pr(bzbz---2b.zb—t|b)F'(b)

_ fm(m)f,ﬁ(m+2)l"(2m+l) | |—n Z Z L (2 )bmn+k 1
T, m(2m+1)F w(n) (I (m))"I"(m+2)

—m24

Therefore, adding (16) with « replaced by ¢ and the 1ntegrated result
of (20) with respect to b, over 1=b,=t, we have the following theorem.

THEOREM 4. Let A be distributed as (12), then the c.d.f. of R=
A +2)" = 2,(14+2,)"" where 2, and 2, are the maximum latent root and
the minimum latent root of A respectively is given by

_ Iy(m) L2y ( Fu(n) ] mee
21) Pr(R<t)=— _
_ Dam+2rEm+1) v
L,2m+1)(T(m)M(m+2) i=

( _ l)t(tm2+t—1 _ tmn+k)
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- (mn—mi+k—1+1) ; <i1> [”[';;:j]p Cé((II-)l)} .

5. The distributions of tr A and tr A(L,+A)™

By inverting the Laplace transform of the density function of tr A,
that is, inverting E (etr (—tA)), we have the p.d.f. of tr A in the fol-
lowing way.

THEOREM 5. Let A be distributed as (12), then the p.d.f. of T=tr A
is given by

k

(22) L T s L sy ) G2

I'(mn)| 2" x kl(mn)
On the other hand, the density function of T is also obtained by
integrating (13) with respect to ,’s, 1=2, 3,---, m, over the hyperplane
Tzfj 4; with fixed T. Therefore comparing the coefficients of C(—23"")
i=1

between the representations of the density function of tr A obtained
by the two methods mentioned above, we get the following fact, which
is the extension of (2.1) in Khatri [9] to complex variate case.

COROLLARY 2.

S T dp = LM m) (1) & 7y pmntis
@) |, 14P==C) JT =4y Tl aa P, - G T,

where
D={{=T— (At 4+ - +2)>5>1>+->2,>0} .

With the direct use of (23) in (14), the density function of tr A(I,+ A)™
is gotten as follows:

THEOREM 6. Let A be distributed as (12). Then the p.d.f. of F=
tr A(I,+ A)™! is given by

L Pt s By

24) I’'(mn)| 2] © kl(mn),

Considering that (tr A)*=3]C.(A), we shall multiply (12) by (tr Ay

and integrate with respect to A over A=A*>0 with the use of (86)
of James [6] that

@) | etr(—AB)|AI"C(ACHA=T.()1L|BI"C(BC) .
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Then we get the kth moment of tr A as follows:

(26)

COROLLARY 3.

E(¢tr 4))=% [n1.C(2) .
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