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Summary

The general nonnull distribution of Wilks statistic, the likelihood
ratio statistic in MANOVA, can be expressed as a product of conditional
beta variables [3]. Making use of this result, in the present paper, an
upper bound for the nonnull distribution of Wilks statistic is obtained,
which provides a conservative evaluation of the power of the likelihood
ratio test for the cases when the alternative hypothesis is of rank 1,
2 or 3. For p=2, where p is the number of variables, and large f;,
the degrees of freedom, it has been shown that the results of this
paper give a much better approximation to the power of Wilks statis-
tic than Mikhail’s approximation [10]. A few percentage points have
also been computed for p=38 and selected values of the degrees of free-
dom and the noncentrality parameters, which in the linear case have
been compared with the exact values obtained by the author [7].

1. Introduction and notations

Let the columns of a pXf, matrix X=(x,;) and a pXf; matrix
Y=(y,;), p</f., be distributed independently in p-variate normal distri-
bution with a common positive definite covariance matrix ¥ and let
E(X)=M, E(Y)=0. The likelihood ratio criterion for testing H,:
M(px f;)=0 against M+0 can be expressed in terms of the following
criterion suggested by Wilks [16] and Pearson and Wilks [11],

A=|YY'|/| XX+ YY" .

In the context of multivariate analysis of variance, YY’ and XX’ are
the sums of product matrices for error and hypothesis respectively,
and f; and f, are the corresponding degrees of freedom.

Let 0<02<---<6i<co, be the roots of the determinantal equation,
| MM'—4'Y|=0, and &, be the non-negative square root of &;. The
sampling distribution of A denoted by W,(fi, f:; i, -+, 7)) where r=
rank (M), will be called the Wilks distribution with p dimensions, f;
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and f, degrees of freedom and noncentrality parameter vector (&,---,
d;7). In this paper this distribution will be studied for p=2 and 3. If
p=1, the problem is trivial. In the following, we shall assume p>1.

2. General nonnull distribution of 4

To study the general nonnull distribution of 4, it can be assumed,
without loss of generality, that

D, 0

2=1I,, M=
? ( 0.0 >
where D,.=diag (é1,---,0!) and & (i=1,---,7) are the positive eigen-
values of MM’ (or of M'M). Then, using the random orthogonal trans-
formation due to Wijsman [15], Asoh and Okamoto [3] have shown that

for r=1, i.e. in the linear case (Anderson [1], Anderson and Girshick

(2,
2.1) Wif1s fo; 8)=B(f[2, £/2; Y W,l(i—1, i)

a product of a noncentral beta variate and an independent Wilks variate.
Gupta [7] has obtained the distribution of 4 in this case for p=2, 3,
4 and 5 and has also given the general form of the distribution for
any p. For the case r=2, i.e. in the planar case it has been shown
[3] that

(2.2) Wi(f1, 1o 81, 03)=B(f1/2, f2/2; ) B((fi/2—1), fo/2; 4)
: Wp—Z(fl—zr fz)
where
2 __s2(1__ Th
Az_az<l xl.x{.+y1.y{.> ’

and x,. and y,. are the ith rows of the matrices X and Y respectively.
Since 4,<d; with probability one, it follows [3] that

(2.3) W (fi, fa; 81, 03) > B(£1/2, £2/2; 8)B((f/2—1), f,/2; &%)

* Wp—z(ﬁ_zv f2)
where the symbol “>” denotes the relation “is stochastically larger
than” and the three factors in the right-hand side are distributed in-

dependently.
In general we get [3] the following stochastic inequality :

@4) W fa e, ) T B( (k1) £ )
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where the r factors on the right-hand side are distributed independ-
ently. Hence if we can evaluate the distribution function Fz(x) of the
product of noncentral beta variates in the right-hand side of (2.4), then
it will give an upper bound of the distribution function Fy(x) of the
Wilks statistic.

3. Method of derivation of density of the product of noncentral beta
variates

Let us denote the density of a noncentral beta variate occuring in
(2.4) by

(1) LE)=B[L(fit1-i), —fi o X,
=K, XhH-on-11 _ X))yt
F( (it fit1—3), —f,,—a(l X)), 0<X<1

where
_s1 1 L1
(32) Ko=| e [B(L(fit1-i) 2£)]
and ,F) denotes the confluent hypergeometric function, defined below.
(@), #
3.3) Fia, b, 2)= % ®). T’L—'—

where (a),=a(a+1)---(a+n—1).

Now substitute in (8.1) for ,F; from (3.3) and transform Y=
—log X;, then the density of Y,, after binomial expansion, takes the
following form.

(4  LY)=K Fa. 3] (1)‘(”+ eruwmssora, vz,

where v=fi+f;, b=1;/2—1 and

_ (v+1—1)/2),(5}/2)"
(3.5) @y G .

To find the distribution of ﬁ X,, we first find the distribution of
i=1

—log (le X,> =§pl (—log X‘):é Y,, which is the sum of independently

distributed random variables, and then make inverse transformation to
get the required distribution. The latter distribution can be derived
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by evaluating the successive convolutions (see Gupta [6], Pillai and
Gupta [12], Schatzoff [14]). Hence for p=2 we obtain the pdf of U=
X, X; as

Y E e D O MM (2 S AV o A ——
8.6 2KKU Za"a“kzlgo 2m —2k— 1< k ><m>(U U,

where K; and K, are given by (3.2) for 1=1,2 and a,,, a, are given
by (3.5) for i=1, l=3 and ©=2 respectively.
Similarly the pdf of U=X,X,X, is given by

3 oo
3.7 2T KJU™ 5 0,000 butCutduw)

Jtn=

where K; (=1, 2, 3) are given by (3.2); a,,, a; and a,, are given by
(38.5) for =1, l=3; 1=2, I=l and ©=8, I=n, and

n—E %f(k m,k+1)log U,

—2k—1
= me o DSE:k gy St e UE=TT
G=2 2 m— = 3:;:: gr—gy” o e U= UTY
and
2.8 70 m, )= (059) (b1 (b4m)

For p>3 the density becomes too involved for presentation as well
as for programming. However, the method of this section, provides a
basis for a recursive algorithm for deriving the density at successive
stages of the convolution process.

4. The stochastic inequality

The stochastic inequality (2.4), for p=2, can be written as

(4‘1) WZ(.fl!fz;ais 6§)>‘-E(U(21flr.f2))
where _L(U(2, fi, f3)) is given by (8.6) and for p=3, we get
4.2) Wy /1, fo; 615 83, 63) > L(UGB, fi, f2)

where L(U@S, f;, f)) is given by (3.7). Now the mathematical simpli-
city of L(U) makes possible the derivation of the corresponding cdf
by straight forward integration. Indeed, the distribution function
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Fy (u) of the product of noncentral beta variates gives an upper bound
of the distribution function Fy (u) of the Wilks statistic. For p=2,
we get

(4.3) Fy (W) <Fp(u)

where

(4.4) Fow)=4KK, 3 ayay 53 S 16, m, 0)
5ii=0 tm 2m—2k—1

< uk um-l/z >
fi+2k  fi+2m-—1/"

K, (1=1, 2) are given by (3.2) and f(k, m, r) is defined by (3.8) for »=0.

Then (4.4) gives the upper bound of the distribution of the likeli-
hood-ratio test in the linear case (i.e. when the rank of the alternate
hypothesis is one) for 8i=0, and also in the planar case (i.e. when the
rank of the alternate hypothesis is two). The linear case has been
studied by Gupta [7] and exact results here are available. Pillai and
Jayachandran [13] have studied the planar case for p=2. However,
little is known for p=3, except in the linear case (see Gupta [7]). The
above analysis leads to the following inequality for p=3.

(4.5) Fly ()< Fp ()
where
(4.6) Fy (u) =K K K" ;é;:o 302,03 (Vs + Cintdiin)
=2 (—1)u” f(k, m, k+1)((f,+2k) log u—2) ,
TEm (2m—2k—1)(f,+2k)
ro_ (_1)k+m+r k uk _ ur_l
Ciin ,rk;%_’l (2m—2k—1)('r—k—1) f( , m, ’r)<f1+2k ﬁ+2’l‘—'2> ,
=2 3 (=1 fk, m,r)

kmr (2m—2k—1)(2m —2r+1)

< um—1/2 u'r-l )

fi+2m—-1 fi+2r—2/"

and K; (1=1, 2, 8) are given by (3.2) and f(k, m, r) is defined in (3.8).
Let us define the case when the alternative hypothesis is of rank

3, as spacial. Then (4.6) gives the upper bound of the distribution of
the likelihood-ratio test in the linear, planar and spacial cases for p=3.
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5. Computational value of the results

The expressions (4.4) and (4.6) were programmed and it has been
verified that the total integral of the series obtained by taking a few
terms only, rapidly approaches the theoretical value one as more terms
are taken into account. Since 4,—4, in probability as f,— oo and/or
Ji— oo, a conservative evaluation of the power of the likelihood-ratio
test criterion is provided by the results obtained in Section 4, which
is expected to be a good approximation when f, and/or £, are large.

Table I. Exact and approximate powers of Wilks criterion
for p=2, f1=72 and f,=7

o} 0% Exact Approx. (Mikhail) A

0 1 0.07329 0.080 0.073
0 2 .1008 .120 .101
1 1 .1014 .120 .101
0 4 .1670 .234 .167
1 3 .1688 *234 .168
2 2 .1694 .234 .173

The power of Wilks statistic was approximately evaluated using
(4.4) for p=2, fi="172, f,=T and for various values of the noncentrality
parameters 6 and d;. The results are given in Table I under A. Pillai
and Jayachandran [13] have computed exact power in this case and have
made accuracy checks of the approximation suggested by Mikhail [10].
It is evident from Table I that our approximation is excellent and a
considerable improvement over Mikhail’s approximation. For small

Table II. Percentage points for p=3 and «=0.95

) fi A a3 o} u E
2 8 0.5 0 0 .77569 .77570
1.0 0 0 .76094 .76096
4.0 0 0 .67010 .67011
20 0.5 0 0 .91088 .91089
1.0 0 0 .90402 .90403
4.0 0 0 .85744 .85745
4 14 0 0 0.5 .67676
0 0.5 0.5 .66780
0.25 0.25 0.25 .67202
0 0 1 .66655
0 1 1 .64658
1 1 1 .62718
3 3 1 .51492
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values of the deviation parameters, A provides about three decimal
place accuracy in the power. However, considering larger deviations
also, our approximation is much better than Mikhail’s. It may be added
that notation is not standard from one author to another and our f;
and f, are their (Pillai and Jayachandran [13]) 2n+p+1 and 2m+p+1
respectively.

The percentage points u for p=3, «a=0.95, f;=2, f,=8, 20 and f,=
4, fi=14 have been computed for selected values of the noncentrality
parameters 8}, 1=1, 2, 3, using the approximate distribution (4.6). These
results are presented in Table II. In the last column we have given
exact percentage points E in the linear case computed by the author
[7]1. A look at the table reveals the closeness of the approximate and
exact percentage points and also the numerical feasibility of the for-
mulae obtained here, even for small values of f; and f,.

6. General remarks

This is well known (Ghosh [5], Kiefer and Schwartz [9]) that Wilks’
A is unbiased, consistent and admissible and its power function is a
monotonic-increasing function of each of the noncentrality parameters
(Dasgupta, Anderson and Mudholkor [4]). Very little, however, is known
about the actual magnitude of the power and this is due to the fact
that the noncentral distribution of the test criterion has not been ex-
pressed in a numerically feasible form. From a practical standpoint,
the results of this paper make possible for the first time the computa-
tion of the upper bound of the distribution for p=3, which in fact
provides a good approximation for large f, and/or f;.

The results obtained are valid for a class of alternatives called the
class of “linear, planar or spacial” alternatives. This class in many
important cases is completely general and includes all possible alterna-
tives. Among these important cases are the multivariate test of equality
of mean vectors in two, three or four groups, any two or three-variate
test, the test of main effects in multivariate factorial experiments at
two, three or four levels, and any other multivariate analysis of vari-
ance or regression analysis with one, two or three degrees of freedom
for hypothesis. For cases where both the number of response variables
and the degrees of freedom for hypothesis are greater than three, the
class of linear, planar or spacial alternatives is not completely general.
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CORRECTION TO
“ON A STOCHASTIC INEQUALITY FOR THE WILKS STATISTIC”

A. K. GurTA

In the above titled paper (this Annals 27 (1975), 341-348), the fol-
lowing correction should be made:

On page 346, last line: The value of 3 should read 3.
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