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1. Introduction and summary

Duality in the queueing theory has been discussed by Finch [2],
Foster [3], Ghosal [4] and others in connection with storage problems
since the late 1950’s. For example, Foster considered in his descriptive
paper queues with maximum of N waiting-spaces and derived duality
principles to relate the number of customers to the number of waiting
spaces, since the number of waiting spaces decreased by one as the
number of customers increased by one. In relationship between the
number of customers and the number of waiting spaces, the arrival
and service processes are simply reversed. This is the reason why the
dual system in a single server queueing system has commonly been
defined by interchanging the arrival process and the service process in
the primary system. On the other hand, duality in tandem queueing
systems has been applied only to the following special cases. Gordon
and Newell [5] considered cyclic queueing systems where N customers
advanced sequentially in clockwise. They studied the relationship be-
tween a customer and a waiting space as follows: when a customer
completed his service at the ith stage and advanced to the (:+41)th stage,
waiting spaces at the (i+1)th stage were decreased by one and those
at the ith stage were increased by one just like one of waiting spaces
at the (¢+1)th stage completed her ‘service’, that is, waiting spaces
advanced sequentially in counterclockwise. Therefore they defined the
dual system as reversing the order of service in the primary system.
Makino [8] analyzed the reversibility for some two and three stage
tandem queueing systems where hé compared the ordinary system with
the reversed order-of-service system. The above authors treated neg-
ative exponential service processes and have applied the standard method
of the queueing analysis to these problems. When all service time dis-
tributions are negative exponential, the process of queue lengths be-
comes Markovian so the balance equation method can be applied though
there still remains insurmountable computational problems. However,
when service processes are more complicated and realistic, an alterna-
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tive method must be developed to analyze the system.

In this paper we treat more realistic case where service time dis-
tributions of all stages are arbitrary. For the duality in tandem queue-
ing systems we accept the definition of Gordon et al. (cited above) and
derive three equalities concerning the duality. The first equality is on
the time required for N customers in batch arrival completing their
services; the second equality is concerning with the interdeparture time
between the nth and the (n+1)th customers when the system starts
from such a state that a large number of customers are waiting in
front of the first stage but no customers in another place; third and
the last equality is most important and usuful and which is on the ca-
pacity of the system. Now if we consider such systems where the order
of performing services can be changed (for example, scheduling and
similar problems), the optimal order of service is the most important
and should be researched. When we discuss this optimal ordering, the
capacity is taken up as one of good measures. Therefore it is desirable
that we select the order of service which maximizes this capacity. For
such an optimization of the system, theorems proved here show that
analyses can be reduced by half. As an example of the above problem,
we derive in Section 4 that in certain three stage tandem queueing
systems the maximum capacity is obtainable by arranging the server
with minimum expected service time at the second stage.

2. Descriptions of systems

In this section we give descriptions of systems and some notations
which are used in this paper. First, the ordinary tandem queueing
system each stage of which is consisted of a single server is considered
as follows:

Model I: There are K servers (namely A,, A,,---, Ax) arranged in
tandem (see Fig. 1(a)). Customers arrive at the system and queue
up for service by the server A4,. Each customer receives service
from the server A, in order of arrival, and next from the second
server A, and so forth until the service by the last server Ay is
completed. The service discipline is first-come and first-served at
each server. There are no customers defections at any point. The
initial queue length may grow unlimitedly, but on and after the
second queue, a finite number of customers (N,—1 in front of the
server A.,,) are permitted to wait. If there are N,—1 customers
waiting in front of the server A,., and the service by the server
A, is completed, the customer just completed his service cannot
advance any more and he is compelled to wait and idles the server
A, until one waiting space opens up (so-called blocking state).
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We define in the next place the dual system of Model I by reversing

the order of service as stated in the preceding section.

Model II: There are K servers (A;, A;,---, Ax same as Model I) ar-
ranged in tandem in reversed order (that is, Ag, Ax_i,---, 4).
There may be permitted N,—1 customers waiting in front of the
server A,. The others are the same as Model I.

GI "
:>0 ...... oo| server A, —=0.....00| server A; }—e-.-e. e Orerees oo| server Ar |—»
_Y—J
queue (M-1) (Nx-1—1)
(a) Model I
GI
::{)o ------ 0O| server Ag 0-----00] server Ax., f|—s---c-—=0 .- 00| server A, —
v 12
queue (Ng1—1) (N—1)
(b) Model I
Fig. 1

We assume that {a,},-1... and {S; ., S¥.}e-r.2,....xino1s,... ATE SEQUENCES
of random variables defined on a probability space (2, B, P). Let a, be
the wnth arrival epoch in Model I and Model II. S, , (Sf,) shows the
nth service time of the server A, in Model I (Model II), and {S,.., Sf.}
a=1,3,... are mutually independent and are identically distributed (i.i.d.).
Let T,, (Ti,:,) be a time epoch at which the nth customer leaves the
server A, in Model I (Model II). Let T, (T#.,) be a time epoch at
which the server A; (Ax) begins her service to the nth customer in
Model I (Model II). When a,’s and S, .’s (S¥.’s) are given, T, ,’s (T,’s)
are perfectly determined in a recursive manner. For example, if all
the N,’s are equal to 1, T, ,’s are written as follows (with initial con-
ditions Ty,=a;, Ty =S+ ---+8Su1):

(2'1) TO,anaX (Tl,n—l ’ an) ’
Tk.n:max (Tk+1,n—l! Tk—l,n+Sk,n) (k':ly 2’ Sty K_]-) )
TK,n= TK—-l,n+SK,n .

When we consider such tandem queueing systems that all the
service time distributions are arbitrary and only finite customers are
permitted to wait between servers, we can identify them with those
systems where none is permitted to wait between servers by consider-
ing suitable number of servers of 0-service, which is due to Avi-Itzhak
and Yadin [1]. Accordingly from now on, we assume all the N,’s are
equal to one, without loss of generality.
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3. Duality

We first suppose that N customers arrive in batch at the system
and they find the entire system empty. Considering time required for
servicing N customers in both systems, we can obtain the following

LEMMA 1. When the order of servicing customers in Model II is
reversed in contrast to Model 1, two quantities of time required for a
batch of N customers to complete service in both models are equal, that
18, the following identity is valid for any K, N and we€ 8.

(3-1) To’,kzv(w) - T;(k, @) = TK,N(w) - To,l(w) .

PrOOF. We suppress explicit dependence of w in the following for
the convenience of notation. T,’s are defined recursively as (2.1)
where all a,’s are equal to 0. 7T¢*’s are also defined recursively in the
same manner. Reversing the order of servicing customers for two
models, the following is valid for any k and n.

(3.2) S;:'nzsk,N—n+1 .
First we define k(N), k(N—1),-- -, k(2) as follows:

Ty
Server Aq--——-——————— Tuzu‘ Tisa ‘ _ ‘ ’
I
m Ts.. !
server Aj-———— —--———— — - - ol Ll —— =
|
|
server A; ——————-— ————la P S F -
f : | 1
server A,- - - : __.._._.l._..____J__
! ! l | I
Toa ! | | i
) — ! | | |
1 : | | t
: (a) Model I 1 : : [
| | | ' |
| ! | | '
: ! I| T:I
server A, _Jl_ ________________ Tl:z).s Tﬂ*!u - ‘
i Tl T
server A;-p———-=-——=———— - —
|
|
server A,-Il— ————— —_—— R,
A A
server A,- ——— Yy
/
P O v
05 ¢
(b) Model I —— service-time

—=—=— blocking-time

Fig. 2 A sample path (K=4, N=5).
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(3.3) K(N)=max (k; Tey1=Ti 1y)

k(m)=max (kSk(n+1)+1; Topy=Tior,)
(for n=N—1, N—-2,---,2).
Existence of these k(n)’s is assured by the fact that for any =, T ,,=

T.,.. Then we shall prove, by means of double mathematical induction,
the following inequalities.

(34) kazv-nn - TI?,I é TK,N - Tk,j—l
(equality holds at least for k=£k(j).)

(a) In case of j=N: From the definition of k(N), the Nth customer
advances from the k(N)th stage to the last stage without blocking,
accordingly Txy— T v=Senx+---+Sk~x (E=k(N)). For k less than
E(N), clearly Ty y—Ti1x=Senv+ - ++Sky. On the other hand, the
first customer in Model II does not take any blocking state at all, so
T, —TF =St +---+8S%, for any k. Using (3.2) the next (3.5) is
established.

(3-5) Tk*—l,l_ Tﬁk,1= Tx,zv’— Tk—l,N (kgk(N)) ’
Tk — T STxn—Tiow  (E<E(N)).

Now we prove (3.4) by means of the mathematical induction. First,
clearly, T#,— T#,<Txxy—Tx x_,. For common k>0,

(3.6) T — T =max (T, .+ Sk, Tk ) —TE:
=max (T, — T&:+ Sk, Tiki— TE))
smax (Tg,y— Tirr,w-1+Serr,v-1, Tre,w— Tioy,w)
=T x—min (Tyr1,v-1—Sks1.v-15 Te-1,x)
g TK,N—. Tk,N—l

because Ty n_1=Ti1x and Tiy_1+Siii,x-1= Tis1,n-1. For k=0,
To>,k2 - chk,x= Tf,kz +sz— E;é TK,N" Tl,N—1+Sx,N—1§ TK,N_ To,N—1 .

For the equality in (3.4), it is sufficient to show Ty, ,— T#: =Tk r—
T .n-1, which is derived by using the definition (3.3), the equality
(3.5) and the fact that Tify,,— T#F = Tvy-1.1— T#&:. Together with the
inequality (8.6) for k=FKk(N), the equality in (3.4) is concluded.

(b) In case of j== (for j greater than n, we assume that (3.4) holds
as the induction hypothesis): For k=K,

TI?,N—N-H_ T,}'f,: TI?-LN-nH— Tz’élé TK,N—‘ Tx-l,né TK,N— TK,n—l .

For common k>0,
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(3.7 kaan+z— T ,=max (T y-n+e+SEt,vonss Tk v-ni)—TE
<max (Te,x— Trstn-1FSettn-1s Tx,x— Tr1,0)
=T, y—min (Ter1,n-1—Ses1,n-1> Te-1,0)
STey—Ten -

For k=0,
To’,kzv—n+2— T1§<,1= Tx’,kN-n+z+SfN—n+z— TI’K",I
é TK,N_ Tl,n—1+sl,n—-l§ TK,N_ To,n—l .

On the other hand, T*y_n.o— T# 2T x-nr1i— T#:, We can derive the
equality in (38.4) for k=k(n)=k(n+1)+1 as follows:

TK,N_ Tk(n),n—lg Tk,'(‘n),N-n+2_ T}‘,lg Tk?u)—l,N—n+l— Tl?,l

= Tx,N— Tk(n)-l,n_—' Tx,zv"‘ Tk(n),n—l .

For k=k(n)<k(n+1), nth customer does not take any blocking state at
the k(n)th,- .-, k(n+1)th stage in Model I by the definition of k(n), T},
equals to Temy—_1.n+Sicrnt+Skmw+tat «++ +Sk. for any k such that k(n)<
k<k(n+1). In a meanwhile,

kaN-n+1"‘ Tfrk,lg T:(:n-i—l),N-ni-l+S;:(n+l),N—n+l+ et +S;f+1,1v—n+1_ TK*,I
=Tx x— Trn+vontSensvnt -+ +Seirn
=Tgv—Tin (k(n)—1=<k=<k(n+1)).

Together with the hypothesis of the induction, i.e.,
kaN—n+l— Tl?,lé TE,N— Tk,n ’

equalities in (3.4) hold for k(n)—1=<k<k(n+1). Especially using the
equality for k=k(n)—1
Tk"(‘n),zv-wz—' Tl?,xg Tk"(‘n)—l,xv—nn— TK*,1= Tx,N—' Tk(n)-l,n

= Tx,zv“ Tk(n),n-l .

Using (3.7), equality for k=k(n) in (3.4) is deduced, and this completes
the induction.
For the proof of the lemma, let’s take =2 in (3.4), then

kaz),zv —Tg.= Tew—Tiwn »
accordingly,

To’.kzv— Tx*,lg Tk"(‘z),N+SfN+ e +Sf(z),1v"" Tfrk,l
=Txx— Tew1+Si1+++ * + S
= Tx,y'— To,1 .

On the other hand, also from (3.4),
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To’,kN— T;(k,lé TK,N— To,1 .
These two inequalities assure to hold (8.1), which completes the proof.

The following theorem is derived from the preceding lemma.

THEOREM 1. The distribution of time required for a batch of N
customers completing services for Model 11 is identical with the one for
Model 1.

ProOF. Let Dy=Tgy—T,; and D}=TX*,—T%¥,. Since T,,’s can
be expressed recursively as (2.1) with suitable initial conditions, D, can
be expressed as a function of {S,.}i1s...xin=1,5...n. In the same man-
ner, D% can also be expressed as a function of S, ,’s such as

(3-8) Dz";:f(sx,zvy SK—I,N! Tty Sl,Nv SK,N_n Tty Sl,l) .
Let D** be a random variable defined as
(3-9) Dz’s*:f(sx,n SK—I,I’ tey Sl,lr Sx,z: ey SI,N) .

Since {Si.}n-1s..~ are ii.d., D} and D}* are identically distributed.
Therefore D, and D¥f* are also identically distributed according to
Lemma 1. Since D¥* is defined as the time required for N customers
completing services in Model II whose order of customers is the same
as in Model I, the proof is completed.

COROLLARY. In tandem queueing systems described above, the dis-
tribution of interdeparture time between the nth and (n+1)th customers
remain unchanged even though the order of service is reversed.

The capacity of tandem queueing systems which has been discussed
by Hunt [7], Makino [8], Hildebrand [6] and others becomes a maximum
input rate. In other words, this maximum rate provides us the cri-
terion for existence of a limiting probability distribution of a waiting
time. These authors have defined the capacity as the reciprocal of
expected service time plus blocking time of the first stage in its limit-
ing state. If we define the capacity as the reciprocal of the limiting
expected interdeparture time from the last stage, the following lemma
assures the coincidence of the two definitions.

LEMMA 2. In the tandem queueing system with no intermediate queue
with a large number of customers waiting in front of the first stage, we
can get

(3.10) im E(T;,— Tiny)=a< oo
(for k=1,2,---, K; a ts constant for any k).
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ProoOF. Let B, be the time that the nth customer is blocked in
the server A, and let V,, be the time that the server A, waits for the
nth customer after servicing the (n—1)th customer. Using these ran-
dom variables, T;,— T, is represented by V,,+Si .+ By, SO

3.11)  HmE (Ten—Tin)=lim E(V,,)+imE (Si..+Bs.) -

Now, generally, the following relation is true for any k and =.
(3-12) Sk,n+Bk,n+Vk,n+l=Vk—l,n+1+Sk—1,n+1+Bk—l,n+1 .

If we start the system with a large number of customers in front of
the first stage but no customer in another place, we can use the result
that E (S,,.+B,,) and E (V,,) have finite limiting values, say, « and »,,
respectively, which is due to Hildebrand [6]. Clearly ;=0 on account
of the assumption. Using this result, (8.11) is true for k=1. If we
assume that (3.11) is true for any k less than j, we can derive (3.11)
for k=75 as follows:
imE(T;,—T;,.-.)=limE (V,,)+lim E (S, .+ B, )

n—o0 n—

=’l),+£i_l:2 E (Sj_l,n“ +Bj_1,n+1+Vj—l,n+1 - Vj,n+l)
= lim B (V1,1 B (S,-1.+ Byo1.)
=1im E (Tj—l,n— Tj—l,n—l)=a< oo

n—oco

this completes the proof.

THEOREM 2. In the tandem queueing system with a finite interme-
diate queue, the capacity of the dual system is equal to that of the pri-
mary system.

PrROOF. Using the previous lemma,

lim E (Tx’n— TK,”_1)=1im E (Tl,,.'—‘ Tl,n—l) .

n—0 n—

On the other hand, Tx,— Tk .; and T¢%—To*%_, have the same distri-
bution function owing to the corollary to Theorem 1, accordingly,

lim E (TK*—l,n_ Té‘_l,,,_l)=lim E (Toikn_ T,,’fn_l)=lim E (Tl,n_ Tl,n—l) . ‘

n—oo n—oc0

Reminding that the leftmost quantity shows the reciprocal of the ca-
pacity in the dual system, the proof is completed.
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4. Optimal order of service

In Section 3 we have showed that in our tandem queueing system
both primary and its dual systems are identical on the basis of the
capacity. However, if we consider such systems that the order of
service is permitted to be changed, there are many possible orderings
besides a reversing order. In such a case the optimal ordering of serv-
ice is the most important problem from the point of view of the sys-
tem design. For the measure of optimality, we take the capacity dis-
cussed in Section 3, that is, it is desirable that we select such order
of service that maximizes the capacity of the system.

Here we consider some three stage tandem queueing system like
that of Model I which is described below in detail.

Model A: The system corresponds to the special case of Model I where

K=3 and N,=N,=1; that is, there are three servers A;, A, and

A, arranged in tandem in this order and no customer is permitted

to wait in front of both the server A, and A; (see Fig. 3(a)).
Model B: This system is obtained from Model A by interchanging

server A; and A, (see Fig. 3 (b)).

input output
warehouse - server A, server A; ‘server As
(a) Model A
i output
warehouse input server A server A, server As |
(b) Model B
Fig. 3

We assume in both model that a large number of customers are wait-
ing in front of the first stage initially. In the following, let U,, and
Uk, denote service time plus blocking time of the nth customer in the
server A, in Model A and Model B, respectively. In our context, limit-
ing values of E(U,,) and E (U*) or their reciprocals are compared with
each other.

For initial conditions we take
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(4-1) Ul,o=Sl,o ) Uz,o=Sz,o ’ Uz),ko=Sa),ko y Ux’,ko=S1>ro .

For each n greater than 0 the following relationships are easily obtained.

(4.2) Uin=max (S;, Upn) ,
(4.3) Uyn=m8X (Syn, Upns+ Upns—Usa)
(4.4) sh=max (S5, U ,
(4.5) th=max (S%, Uk .+ U —U) .

Furthermore, at the third stage there does not occur any blocking
state, U,, and U, are always equal to S;, and S;%, respectively. Need-
less to say that {S;.}.-01... and {S&.}.=01,... are i.i.d. and indicate serv-
ice time by the server A, in Model A and Model B, respectively. Then
we get the following '

THEOREM 3. If S,, is stochastically larger than S,,, that is, Pr(S,,
Sx)<Pr(S;,=x), then next inequalities hold.

(4.6) Pr(U,.=x)=Pr (Uk<2) ,
(4.7 lim E (U,,.)<lim E (U%) .

N—00 N>

PrOOF. In order to prove this theorem, first we establish the next
(4.8) Pr(U,,<2)zPr (U%<z) (for any u).

These inequalities can be ascertained by means of the mathematical in-
duction. First, using (4.2) and (4.4), we rewrite (4.3) and (4.5) follows:

4.9) U, .=max (S, 85,1+ OA(U;,n1—8S4,0)) »
(4. 10) Ulz’kn =max (Sl’,kn ’ S:':,kn—l + 0 AN ( Ijl:fn-l - S;.kn)) ’

where X AY denotes the minimum of X and Y. For n=0, according
to (4.1) and the assumption of the theorem, (4.8) holds. For the nth
step of the induction, Pr(U,,,<2)=Pr(U*_;<z) and Pr(S,,<2)<
Pr (S;5,<x) hold because of hypotheses of the induction and the theo-
rem, we can derive

(4.11) Pr (OA(Uyni—Si.) <) =Pr (OA(UX_—Si*)<x) .

Applying (4.11) to (4.9) and (4.10), (4.8) is easily deduced. For the in-
equality of (4.6), we rewrite U,, and U}, as

max (Sl,n » Sz,n—l » Sa,n-z + 0 /\ ( Uz,n-—z - Sl,n-l)) and
max (Sz’,kn ’ Sl),kn-l ’ S3>,kn—2+ O /\ ( [Jl;,kn—z - S;,kn-l)) ’
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respectively, by (4.9) and (4.10), and using the logic by which (4.11)
was deduced and (4.8) we get (4.6). (4.7) is a direct consequence from
(4.6) by the fact that U,, and U have limiting d.f.’s (due to Hildebrand

[6D.
Using Theorem 2, we can get the following

COROLLARY. If S,, and Sy, are both stochastically larger than S,,,
the maximum capacity of the system is obtained by arranging the server
A, to the second stage.

5. Remarks

The definition of a dual system which is adopted in this paper is
not unique, of course, for example if we reverse whole processes includ-
ing the arrival process, that is, the service process of the last server
in the primary system becomes the arrival process in its dual system,
and the arrival process in the primary system becomes the service pro-
cess in the dual system, another dual system can be derived. This is
just like a GI/G/1 case where a dual system is obtained by interchang-
ing the service and the arrival processes. Theorems we’ve obtained in
the paper are also true for this manner of a dual system with some
modification.

The capacity as a measure of the optimality of the system is one
of a good measures, but is not unique, also. For example if flow rate
which is defined as the reciprocal of the expected total time in system
is considered as the measure of optimality, some different aspects may
be presented, which will be discussed later.
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CORRECTION TO
“PROPERTIES OF DUALITY IN TANDEM QUEUEING SYSTEMS”

GENJI YAMAZAKI AND HIROTAKA SAKASEGAWA

In the corollary to Theorem 1 of the above paper (this Annals 27
(1975), pp. 201-212), “distribution” should be read as “ expectation.”
The correct statement of the corollary becomes as follows.

COROLLARY. In tandem queueing systems described above, the ex-
pectation of interdeparture time between the mth and the (n+1)th cus-
tomers remain unchanged even though the order of service is reversed.



