SOME PROPERTIES OF MATUSITA'S MEASURE OF AFFINITY OF SEVERAL DISTRIBUTIONS

GODFRIED T. TOUSSAINT

(Received March 17, 1972)

Introduction

Let F_1, F_2, \dots, F_r be distributions defined on the same space R with measure m and let $p_1(x), p_2(x), \dots, p_r(x)$ be respectively their density functions with respect to m $(p_i(x) \ge 0$ and m is Lebesgue, counting, or mixed). Then Matusita [1] has defined the affinity of F_1, F_2, \dots, F_r as

(1)
$$\rho_r(F_1, F_2, \cdots, F_r) = \int_R [p_1(x)p_2(x)\cdots p_r(x)]^{1/r} dm.$$

For the case of two distributions F_1 , F_2 the affinity is given by

(2)
$$\rho_2(F_1, F_2) = \int_R \sqrt{p_1(x)p_2(x)} \, dm .$$

Matusita [1] has shown that

(3)
$$\rho_r(F_1, F_2, \cdots, F_r) \leq \min_{i,j} \left[\rho_2(F_i, F_j) \right]^{2/r}.$$

He has also shown that $\rho_2(F_1, F_2)$ is uniquely related to a distance measure between F_1 and F_2 . The distance measure in question is given as

(4)
$$d_2(F_1, F_2) = \left\{ \int_{\mathbb{R}} \left[\sqrt{p_1(x)} - \sqrt{p_2(x)} \right]^2 dm \right\}^{1/2}$$

and the relation is given by

(5)
$$d_2^2(F_1, F_2) = 2[1 - \rho_2(F_1, F_2)].$$

Matusita [1] has also shown that $\rho_r(F_1, F_2, \dots, F_r)$ is related to a generalization of $d_2(F_1, F_2)$. The generalization is given by

(6)
$$d_r(F_1, F_2) = \left\{ \int_{\mathbb{R}} |p_1^{1/r}(x) - p_2^{1/r}(x)|^r dm \right\}^{1/r},$$

and the relation is given by

(7)
$$\rho_r(F_1, F_2, \dots, F_r) \ge 1 - (r-1)\delta,$$

when, for any pair (i, j) $(i, j=1, 2, \dots, r)$, we have $d_r(F_i, F_j) \leq \delta$.

Equation (5) suggests that other distance measures besides $d_2(F_1, F_2)$ are good measures of affinity. One well known measure of distance between two distributions is Kullback-Leibler's information given by

(8)
$$I(F_1, F_2) = \int_R p_1(x) \log \frac{p_1(x)}{p_2(x)} dm.$$

Unfortunately this measure is not symmetric in distributions as is the affinity. However, the divergence, which is the sum of $I(F_1, F_2)$ and $I(F_2, F_1)$, is symmetric and hence is a suitable measure of affinity. The divergence, which has been frequently used as a measure of distance between distributions, [2], [3], [4] is given by

(9)
$$J(F_1, F_2) = \int_{\mathbb{R}} [p_1(x) - p_2(x)] \log \left[\frac{p_1(x)}{p_2(x)} \right] dm.$$

Recently, Matusita [5] considered the affinity of several distributions in detail and derived certain properties in addition to those found in [1]. In this paper some additional properties of $\rho_r(F_1, F_2, \dots, F_r)$ are derived. In particular, relations are found between $\rho_r(F_1, F_2, \dots, F_r)$ and $\rho_2(F_i, F_j)$, $d_r(F_i, F_j)$, and $J(F_i, F_j)$, respectively. In addition, a generalized version of Matusita's measure of affinity is proposed and related to the expected value of $J(F_i, F_j)$.

2. Some theorems

THEOREM 1. The affinity of several distributions is bounded above by the following inequality:

(10)
$$\rho_r(F_1, F_2, \cdots, F_r) \leq \left[\frac{2}{r(r-1)}\right]^{1/2} \sum_{i < j} \rho_i(F_i, F_j) .$$

PROOF. The affinity can be considered to be the geometric mean of $p_1(x)$, $p_2(x)$, \cdots , $p_r(x)$. From the inequality of symmetric means it follows that

(11)
$$[p_1(x)p_2(x)\cdots p_r(x)]^{1/r} \leq \left[\frac{2}{r(r-1)}\sum_{i\leq j}p_i(x)p_j(x)\right]^{1/2},$$

from which it follows that

(12)
$$\rho_r(F_1, F_2, \dots, F_r) \leq \left[\frac{2}{r(r-1)}\right]^{1/2} \int_{\mathbb{R}} \left[\sum_{i < j} p_i(x) p_j(x)\right]^{1/2} dm .$$

Now, it is known that

(13)
$$\left[\sum_{i < j} p_i(x) p_j(x)\right]^{1/2} \leq \sum_{i < j} \sqrt{p_i(x) p_j(x)}.$$

Substituting (13) into (12) and interchanging signs yields (10).

COROLLARY. It holds that

(14)
$$\rho_r(F_1, F_2, \cdots, F_r) \leq \left[\frac{2}{r(r-1)}\right]^{1/2} \sum_{i < j} \left\{1 - \frac{1}{4} \left[d_r(F_i, F_j)\right]^{2r}\right\}^{1/2}.$$

PROOF. $d_1(F_1, F_2)$ has been called by many the Kolmogorov variational distance [2] and has been related to minimum error probability in the multihypothesis decision problem [6]. It has been shown by Kraft [7] referenced in [3] that

$$(15) d_1(F_1, F_2) \leq 2[1 - \rho_2^2(F_1, F_2)]^{1/2}.$$

Also, Matusita [1] showed that

(16)
$$d_1(F_1, F_2) \ge [d_r(F_1, F_2)]^r.$$

Combining (15) and (16) yields

(17)
$$\rho_2(F_i, F_j) \leq \left\{ 1 - \frac{1}{4} \left[d_r(F_i, F_j) \right]^{2r} \right\}^{1/2}.$$

Finally, combining (17) with the result of Theorem 1 yields (14), the desired result.

THEOREM 2. The affinity of several distributions is bounded below by the following inequalities:

(18)
$$\rho_r(F_1, F_2, \cdots, F_r) \ge 1 - \frac{1}{r^2} \sum_{i \le t} J(F_i, F_j)$$

and

(19)
$$\rho_r(F_1, F_2, \cdots, F_r) \ge \exp\left[-\frac{1}{r^2} \sum_{i < j} J(F_i, F_j)\right].$$

PROOF. First we prove (18). Let \bar{J} stand for the average divergence, i.e.,

(20)
$$\bar{J} = \frac{1}{r^2} \sum_{i=1}^r \sum_{j=1}^r J(F_i, F_j)$$
.

Equation (20) can be written as follows:

(21)
$$\bar{J} = \frac{2}{r} \sum_{i=1}^{r} \int_{\mathbb{R}} p_i(x) \log p_i(x) dm - \frac{2}{r} \sum_{i=1}^{r} K_i(x)$$

where

(22)
$$K_i(x) = \int_{\mathbb{R}} p_i(x) \log g(x) dm$$

and

$$g(x) = [p_1(x)p_2(x)\cdots p_r(x)]^{1/r}$$
.

By definition

(23)
$$\int_{R} \left[\frac{1}{r} \sum_{j=1}^{r} p_{j}(x) \right] dm = 1.$$

Also, from the arithmetic-mean-geometric-mean inequality it follows that

(24)
$$[p_1(x)p_2(x)\cdots p_r(x)]^{1/r} \leq \frac{1}{r} \sum_{j=1}^r p_j(x) .$$

From (24) and (23) it follows that

$$(25) \rho_r(F_1, F_2, \cdots, F_r) \leq 1.$$

Let r correction functions $c_i(x)$, $i=1, 2, \dots, r$, be defined such that for $i=1, 2, \dots, r$

(26)
$$g(x) = p_i(x) + c_i(x) = p_i(x) \left[1 + \frac{c_i(x)}{p_i(x)} \right].$$

Integrating (26) and using (25) yields

(27)
$$\int_{R} c_{i}(x)dm = \rho_{r}(F_{1}, F_{2}, \dots, F_{r}) - 1 \leq 0.$$

Substituting (26) into (22) yields

(28)
$$K_{i}(x) = \int_{R} p_{i}(x) \log p_{i}(x) dm + \int_{R} p_{i}(x) \log \left[1 + \frac{c_{i}(x)}{p_{i}(x)}\right] dm.$$

Now, it can easily be verified that, for any real z,

$$(29) z \ge \log(1+z).$$

Applying (29) to (28) where $z=c_i(x)/p_i(x)$, yields

(30)
$$K_i(x) \leq \int_R p_i(x) \log p_i(x) dm + \int_R c_i(x) dm.$$

Substituting (22) and (27) into (30) yields

(31)
$$\int_{R} p_i(x) \log \left[\frac{p_i(x)}{g(x)} \right] dm \ge 1 - \rho_r(F_1, F_2, \dots, F_r) ,$$

for $i=1, 2, \dots, r$. Substituting (31) into (21) and using the fact that $J(F_i, F_i)=0$, $i=1, 2, \dots, r$, yields (18), the desired result. It should be mentioned here that (18) was recently proved for the case of two dis-

tributions [8]. We now prove (19).

The average divergence can be written as

(32)
$$\bar{J} = \frac{2}{r} \sum_{i=1}^{r} \int_{R} p_{i}(x) \log \left\{ \frac{p_{i}(x)}{\prod_{j=1}^{r} [p_{j}(x)]^{1/r}} \right\} dm .$$

Also,

(33)
$$\int_{R} p_{i}(x) \log \left\{ \frac{\prod_{j=1}^{r} [p_{j}(x)]^{1/r}}{p_{i}(x)} \right\} dm \leq \log [\rho_{r}(F_{1}, F_{2}, \dots, F_{r})]$$

from Jensen's inequality. Substituting (33) into (32) yields

$$ar{J}\!\geq\!-2\log\left[
ho_{\it r}(F_{\it 1},F_{\it 2},\cdots,F_{\it r})
ight]$$
 ,

which in turn yields (19).

3. A generalization of Matusita's affinity

In many situations, especially in the decision problem, the concept of weighted distance is useful. In the decision problem the weight represents the a priori probability that a sample comes from a certain distribution. In this section it is proposed to generalize Matusita's affinity as follows:

(34)
$$\rho_r^*(F_1, F_2, \dots, F_r) = \int_R \prod_{i=1}^r [p_i(x)]^{\omega_i} dm ,$$

where $\omega_i \ge 0$, $i=1, 2, \dots, r$ and $\sum_{i=1}^{r} \omega_i = 1$. Similarly, the expected divergence can be defined as

(35)
$$E_{ij} \{ J(F_i, F_j) \} = \sum_{i=1}^r \omega_i \sum_{j=1}^r \omega_j J(F_i, F_j) .$$

THEOREM 3. It holds that

$$E_{ij}\{J(F_i, F_j)\} \ge 2[1-\rho_r^*(F_1, F_2, \cdots, F_r)]$$

and

$$E_{ij}\{J(F_i, F_j)\} \ge -2 \log \left[\rho_r^*(F_1, F_2, \dots, F_r)\right].$$

PROOF. The proof is similar to that of Theorem 2. Several inequalities between $E_{ij}\{J(F_i, F_j)\}$ and other distance measures have been derived in [9].

Acknowledgement

The work reported here was supported by the National Research Council of Canada under grant NRC A-3308 through Dr. Robert W. Donaldson. The author would like to thank Miss Linda Morris for typing the original manuscript.

UNIVERSITY OF BRITISH COLUMBIA

REFERENCES

- [1] Matusita, K. (1967). On the notion of affinity of several distributions and some of its applications, Ann. Inst. Statist. Math., 19, 181-192.
- [2] Kobayashi, H. and Thomas, J. B. (1967). Distance measures and related criteria, Proc. 5th Annual Allerton Conf. Circuit and System Theory, 491-500.
- [3] Kailath, T. (1967). The divergence and Bhattacharyya distance measures in signal selection, *I.E.E.E. Trans. Commun. Technol.*, COM-15, 52-60.
- [4] Toussaint, G. T. (1972). Comments on 'The divergence and Bhattacharyya distance measures in signal selection', I.E.E.E. Trans. Commun. Technol., COM-20, 485.
- [5] Matusita, K. (1971). Some properties of affinity and applications, Ann. Inst. Statist. Math., 23, 137-155.
- [6] Toussaint, G. T. (1971). Some upper bounds on error probability for multiclass pattern recognition, I.E.E.E. Trans. Comput., C-20, 943-944.
- [7] Kraft, C. H. (1955). Some conditions for consistency and uniform consistency of statistical procedures, University of California Publications on Statistics.
- [8] Toussaint, G. T. (1972). Some inequalities between distance measures for feature evaluation, *I.E.E.E. Trans. Comput.*, C-21, 409-410.
- [9] Toussaint, G. T. (1971). Some functional lower bounds on the expected divergence for multihypothesis pattern recognition, communication, and radar systems, I.E.E.E. Trans. Systems, Man, and Cybernetics, SMC-1, 384-385.