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1. Introduction .

Let F,, F,,---, F, be distributions defined on the same space R with
measure m and let p(%), p(%),---, p,(x) be respectively their density

functions with respect to m (p(x)=0 and m is Lebesgue, counting, or
mixed). Then Matusita [1] has defined the affinity of Fy, F},.--, F, as

(1) oAFL, By, F)= | [p@pio)- - -p(@)]dm .

For the case of two distributions F);, F, the affinity is given by
(2) pFy, F)=| vp@mi@dm .

Matusita [1] has shown that

(3) Pr(Fan,°°°,Fr)§I!‘1'ijn [ Fyy F)I .

He has also shown that p(F}, F;) is uniquely related to a distance meas-
ure between F, and F,. The distance measure in question is given as

(4) d(F,, Fy)= { SR W@ —V @) ]’dm}m
and the relation is given by

(5) dy(F,, Fy)=2[1—pyF,, Fy)] .

Matusita [1] has also shown that p,(Fy, F;,- -, F,) is related to a gen-
eralization of dy(Fy, F;). The generalization is given by

(6) a7, Fy={|_Iov@—py@lan]”,

and the relation is given by
(7) pr(FlyFZ""9Fr)z1—(r_1)5,
389
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when, for any pair (¢, j) (¢, 5=1,2,---,7), we have d.(F;, F;)<a.
Equation (5) suggests that other distance measures besides d.(F}, FY)

are good measures of affinity. One well known measure of distance

between two distributions is Kullback-Leibler’s information given by

(8) I(F,, Fz)=§ pi() log 22 g,
R ()

Unfortunately this measure is not symmetric in distributions as is the
affinity. However, the divergence, which is the sum of I(F), F}) and
I(F,, F)), is symmetric and hence is a suitable measure of affinity. The
divergence, which has been frequently used as a measure of distance
between distributions, [2], [3], [4] is given by

(9) I, F)={_ @)~ p@) log [ 2O Jam .
R D)

Recently, Matusita [5] considered the affinity of several distributions
in detail and derived certain properties in addition to those found in [1].
In this paper some additional properties of o, (F}, F,,- - -, F,) are derived.
In particular, relations are found between p,(Fy, F;,---, F,) and p(F%,
F;), d(F:, F,;), and J(F;, F;), respectively. In addition, a generalized
version of Matusita’s measure of affinity is proposed and related to the
expected value of J(F, F)).

2. Some theorems

THEOREM 1. The affinity of several distributions is bounded above
by the following inequality :

2 172
rF, 9"';Fr§{ :| Fi,F .
(10) P( 1 Fy ) r(r—1) %Pa( 1)

ProorF. The affinity can be considered to be the geometric mean
of pi(x), py(),- -+, p,(x). From the inequality of symmetric means it
follows that

172
(a (@) w2 S p@p )]
r(r—1) i<;

from which it follows that

@ ol P RS20 (S @]

Now, it is known that

(13) = pf(w)p,(x)]”’g = VP@r @ -
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Substituting (18) into (12) and interchanging signs yields (10).
COROLLARY. It holds that

(14) (F,, F F)s[ 2 ]“’z {1 L a(F F)]Z'}m

O\ L'y L'y, ,r_m = Zri’j .
PROOF. d(F}, F;) has been called by many the Kolmogorov vari-
ational distance [2] and has been related to minimum error probability

in the multihypothesis decision problem [6]. It has been shown by
Kraft [7] referenced in [3] that

(15) d\(Fy, Fy)S2[1—p}(Fy, Fy)I'2.
Also, Matusita [1] showed that
(16) ‘ d(Fy, Fy)2[d(F,, F,)]".

Combining (15) and (16) yields
' 1 1/2
7) 0P F)sfi-Liam, Fye]".

Finally, combining (17) with the result of Theorem 1 yields (14), the
desired result.

THEOREM 2. The affinity of several distributions is bounded below
by the following inequalities :

(18) pAF,, oy, F)21-2 S I(F, F)

and

(19) o.F\, Fy,---, F)zexp [—l s J(F,, F,)] .
rt iy

Proor. First we prove (18). Let J stand for the average diver-
gence, i.e.,

[~

(20) Jj=1 gl ,21 J(F., F)).

S

Equation (20) can be written as follows:

(21) =25
~3

i=1

SR py(x) log pi(w)dm—% >t K@)

i=1

where

(22) K@= »2)log gz)dm
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and
9(x)=[py(2)py(®)- - - (2)]'" .
By definition

23) I, [% 3 po)|dm=1.

Also, from the arithmetic-mean-geometric-mean inequality it follows
that

(24 [Di(2)po(2) - - - D)} =

3=

TP
j=1

From (24) and (23) it follows that

(25) Pr(Fl’Fzy""Fr)él-
Let 7 correction functions c,(x), i=1,2,---, r, be defined such that for
1=1,2,---,7
(26) o()=pi@) +ex)=pa)| 1+ 242 |
' ()

Integrating (26) and using (25) yields
@7 SR c(@)dm=p(Fy, Fy,-+-, F.)—1=0 .
Substituting (26) into (22) yields

(@) K@=\ p@logpdn+| p)log|1 +__;((z>) |am .

Now, it can easily be verified that, for any real z,
(29) zzlog (1+2) .

Applying (29) to (28) where z=c(zx)/p.,(x), yields

(30) K@)s|_pdo)log piaydm-+|_cfaydm .
Substituting (22) and (27) into (80) yields

(31 |, p@ o [ 2@ lam21— (5, By, F)

for 1=1,2,--.,r. Substituting (31) into (21) and using the fact that
J(F;, F)=0, i=1,2,---, r, yields (18), the desired result. It should be
mentioned here that (18) was recently proved for the case of two dis-
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tributions [8]. We now prove (19).
The average divergence can be written as

(32) J=2 é‘i SR pi(x) log {—T&@—}dm .
T I1 ()1
Also,
1T [p()1"
(33) |, @) log {L_}dmglog [oAF, Fyye -, F)]
R ()

from Jensen’s inequality. Substituting (33) into (32) yields
jg—z]Og[Pr(Flv Fz»' *y Fr)] ’
which in turn yields (19).

3. A generalization of Matusita’s affinity

In many situations, especially in the decision problem, the concept
of weighted distance is useful. In the decision problem the weight
represents the a priori probability that a sample comes from a certain
distribution. In this section it is proposed to generalize Matusita’s af-
finity as follows:

(39 pH(Fy, Fiopee F)=|_TT @) dm,

where 0;=0, 1=1,2,---,r and é o;=1. Similarly, the expected diver-
i=1

gence can be defined as
(35) E {J(F;, F,)} :g w,j}_J: o; J(F,, F)) .

THEOREM 3. It holds that
E {J(F,, F))} 22[1—p}(Fy, Fy,- -+, F))]
and
E {J(F,, F))} =z —2log [o¥(F}, F},- -+, F')] .

ProoF. The proof is similar to that of Theorem 2. Several in-
equalities between E,,{J(F, F,)} and other distance measures have been
derived in [9].
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