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Abstract

In the Bayesian viewpoint, point estimation and prediction are
treated from a decision-making standpoint. If a loss function can be
determined which associates a loss with every possible error of estima-
tion or prediction, then the optimal estimator or predictor is that value
which minimizes expected loss. In most applications, the loss function
is assumed to be linear or quadratic in the error of estimation or pre-
diction, although there are many practical situations in which these
simple functions are quite inappropriate. In this paper, we investigate
the properties of Bayesian point estimates under other loss functions;
both the general case and two special cases (power and exponential loss
functions) are considered. For the special cases, we also investigate
the sensitivity of Bayesian point estimation and prediction to misspeci-
fication in the loss function and discuss the practical implications of the
results.

1. Introduction

In the Bayesian viewpoint, the choice of a point estimate or pre-
diction is considered to be a decision-making problem, generally an
infinite-action problem in which the space of actions, A, and the param-
eter space, 2, coincide. The decision maker’s objective is to maximize
his expected utility, or, equivalently, to minimize his expected loss (with
losses expressed in terms of utility rather than in terms of some other
numéraire such as money). In Bayesian point estimation problems it
is more convenient to work with losses than with utilities. Formally,
suppose that the decision maker wants to estimate a real-valued pa-
rameter # or to predict a future sample outcome # under the following
conditions :

1. The decision maker’s probability judgments about 6 are quantified

* An earlier version of this paper was presented at the Annual Meeting of the Amer-
ican Statistical Association in New York, August 1968.
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in terms of a continuous density function f defined on 2. In esti-
mation problems, f represents a prior or posterior distribution in
Bayesian terminology. In prediction problems, f represents a pre-
dictive distribution, which is simply the marginal distribution of a
future event, given the current state of (prior) information*.

2. A loss function can be determined which associates a loss L(a, 6)
with every pair of values (a, §), where a ¢ A=2 is an estimate of 4.
An optimal value of a is a value which minimizes the decision

maker’s expected loss,

(1.1) EL(a)= Sg Lia, 0)£(6)do

(such a value may not always exist). Assume that £ is the real line,
R. It is well known that if the loss function is a quadratic function
of the form

1.2) L(a, 8)=k(a—6)

with k>0 (a squared-error loss function), then the mean of the decision
maker’s distribution, E(6)=g, is an optimal point estimate ([9], Ch. 6).
If the loss function is a linear function of the form

k(a—06) if azéd,
1.3) L(a, 6)=
k.(60—a) if agé,

where k, and k, are positive constants, then the k./(k,+k,) fractile of
f(0) is an optimal point estimate. Here k, and k, can be thought of
as the per unit costs of overestimation and underestimation, respectively.

In most applications, L(a, #) is assumed to be of one of the above
forms. However, while it is true that the linear and quadratic loss
functions have wide applicability, there are situations in which they are
quite inappropriate. For instance, even if the loss function is linear or
quadratic when losses are expressed in terms of money, it may be of
a completely different form when the losses are expressed in terms of
utility. This phenomenon is likely to occur whenever the decision
maker’s utility function is not linear as a function of money (for a
general discussion, see Baron [2]; for concrete examples, see Gould [6]
and Sections 4 and 5 of this paper). Of course, even if the utility func-
tion is linear in terms of money, the linear and quadratic loss functions
may be incapable of adequately representing the potential losses in any
given situation (for examples of such situations, see Granger [7]). Raiffa

* Henceforth, the problem at hand will generally be referred to as an estimation prob-
lem, although it should be emphasized that the framework applies equally well to predic-
tion problems.
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and Schlaifer ([9], pp. 205-207) note the possibility of using “modified”
linear and quadratic loss structures to allow the decision maker more
flexibility in the choice of a loss function. Marshall and Olkin [8] apply
quadratic and exponential loss functions to screening and classification
problems.

In this paper, we investigate the properties of Bayesian point esti-
mates under loss functions other than the simple (or modified) linear
and quadratic functions. In Section 2 the symmetric case (symmetric
loss funection and distribution) is considered, and the more general case
is discussed in Section 3. In Sections 4 and 5, numerical results are
presented for the normal distribution and two special classes of loss
functions, power loss functions and exponential loss functions. A sensi-
tivity analysis is discussed in Section 6, and Section 7 contains a brief
summary.

2. The symmetric case

It can be shown that for a wide class of loss functions and distri-
butions, the mean of the distribution is a Bayesian point estimate. A
number of conditions regarding L(a, #) and f(#) will be introduced at
this point.

CoNDITION 1. L(a, #) is a monotone nondecreasing function of (a—6)
for a=6 and a monotone nondecreasing function of (#—a) for a=é.

This implies that L(a, a)<L(a,8) for all ¢ Q2. Thus, using the
opportunity loss concept, L(a, @)=0. Situations in which Condition 1
does not hold are possible (e.g., Savage’s example of William Tell and
the apple shot, for which a downward error of 10° might be preferred
to one of 1° ([10], pp. 230-231)) but are very unusual. Furthermore,
unless there is some interval over which the loss function is constant,
the above inequalities for L are strict. To maintain flexibility, this
will not be assumed, but it will be assumed that L is not everywhere
constant.

CONDITION 2. L(a,6) is symmetric about §=a. That is, for any
a and e,

2.1) L(a, at+e)=L(a,a—e¢) .

This is equivalent to saying that L(a, 0) can be expressed as a func-
tion of the absolute difference between a and 4:

2.2) L(a, 0)=L(la—0))=L(le]) ,

where e=a—¥4.
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CONDITION 3. f(6) is symmetric about its mean, p.
CONDITION 4. For each a€ A, L(a, #) is a convex function of 6.

This is reasonable when small estimation errors are not too serious
but larger errors are much more serious. One possible argument against
convex loss functions is that L—oo as [@a—f#]— . In some situations
it is more reasonable to assume that there is an upper bound for L.
A slightly stronger condition than Condition 4 is strict convexity of L.
DeGroot and Rao discuss the case in which L is symmetric and convex
in [3] and consider multivariate extensions in [4].

CoNDITION 5. The cumulative distribution function F() is a convex
function over (—oco, pl.

This implies that f(f) is non-decreasing on (—oo, y]. If f(6) is
strictly increasing on this interval, then F() is strictly convex.
Using the above conditions, two important results can be derived.

ProposITION 2.1. If Conditions 1-4 are satisfied, ¢ is an optimal
point estimate.

This proposition states that for any symmetric, non-decreasing, con-
vex loss function and any symmetric distribution, the mean of the dis-
tribution is optimal. A proof is given in [5] (see also [6]).

ProposiTION 2.2. If Conditions 1—3 and 5 are satisfied, p is an
optimal point estimate.

Here the requirement that L(a, #) be convex is replaced with the
requirement that F() be convex for #<u. Note that Conditions 3 and
5, taken together, imply that f(6) is either a uniform distribution or
a symmetric, unimodal distribution. The proof of Proposition 2.2 fol-
lows from a theorem of Anderson [1], p. 170; see also [7], [11], [12].

The above results imply that for a wide class of loss functions and
distributions, p is an optimal Bayesian point estimate. Examples of loss
functions satisfying Conditions 1, 2, and 4 are illustrated in Fig. 1. For
any of these functions and a symmetric distribution, g is an optimal
estimate. Furthermore, if the distribution is unimodal in addition to
being symmetric, loss functions such as those illustrated in Fig. 2 (as
well as those in Fig. 1) lead to the choice of pz. The use of the pos-
terior mean as an estimator reflects in part the fact that for any pos-
terior distribution it is optimal under a squared-error loss function. The
results of this section indicate that the mean is optimal for an extended
class of symmetric loss functions and distributions.
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NVAVAWAY,

Fig. 2 Examples of Nonconvex Loss Functions
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Fig. 1 Examples of Convex Loss Functions

3. The general case

“It is flatly impossible to find any one estimator which is ‘good’
—1let alone ‘best’—for all applications in any absolute sense,” ([9], p.
181). The results of the preceding section are of much interest, but
they hold only when both the loss function and the distribution are
symmetric. Violations of these conditions are quite common; it is easy
to imagine situations in which the losses due to underestimation are
different from the losses due to overestimation (e.g., deciding how many
units of a perishable commodity to stock) or the distribution is skewed
(e.g., a distribution of the demand for a commodity).

To allow for asymmetric loss functions, we will break L(a, #) up
into two functions, one for overestimation and one for underestimation :

3.1) L(a, 6)=L{(a—0)+L,(0—a),

where Lye)=L,(e)=0 for ¢<0. Assume that L, and L, are monotone

nondecreasing functions, so that L satisfies Condition 1 of Section 2.
The expected loss associated with action a is

3.2) EL(a)= S_ L(a—0)£(6)d6 + S” L(0—a)f(6)do .

This expected loss may not exist for some or all values of a, due to

nonconvergence. Furthermore, even if it exists, the optimal value of
a may not be unique.

ProposITION 3.1. If L, and L, are convex, and EL(a)<c for all
ac 2, the set of optimal values of a is a bounded interval.
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It is easily shown that EL(a) is convex. Furthermore, since L,
and L, are nondecreasing and are not everywhere constant, EL(a) ap-
proaches oo as a approaches +oco. Thus, the set of optimal values of
a must be a bounded interval.

COROLLARY. If L, and L, are convex and either is strictly convex
and EL(a)<oo for all ac £, the optimal value of a is unique.

From the above proof, if either L, or L, is strictly convex, then
EL is strictly convex and assumes its minimum value at a single point.

Of course, if L, and L, are not convex, the set of optimal values
need not be a bounded interval, and the determination of the optimal
value(s) could be more difficult. Then we have the following:

ProrosITION 3.2. If L, and L, are twice differentiable on (0, oo),
then necessary conditions for a to be optimal are

(3.5) E:.[Li(a—0)=E[L(6—a)]
and
(3.6)  E [Ly(a—0)]+E;[L/(6—a)]+Li0)f(a)+Li(0)f(a)=0,

where the expectations are partial expectations of the form

EqLE1={ Le)ro)s

and the primes denote differentiation with respect to e*. Furthermore,
under the assumptions of Proposition 3.1, (8.5) is a sufficient condition
for optimality.

For example, consider a class of loss functions which are power

functions such that
k(a—0)" if a—6=0,
La—0)= {

if a—0<0,
(8.7 and

k. (0—a) if a—0<0,
Lu(ﬂ—a)=i

if a—60>0,

where k, and k, are positive constants as in (1.3) and 7 and s are also
positive constants. The first order condition (3.5) becomes

* For example, Li(a—0)= [:;%Lo(e) | e=a—0]. Throughout this paper all derivatives eval-

uated at e=0 are taken to be right-hand derivatives (e.g., Ly0)= [‘fi—:Lo(e) le=o]).
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E* (a—0)" _ sk,

(3.8) Ez(@—a)yt 71k,

For the power loss functions, L(a, ) is symmetric about #=a if
and only if (1) k,=k, and (2) r=s; hence there are two possible types
of asymmetry. Note also that L(a, 6) is strictly convex if r>1 and
s>1. A final point of interest is that it is only necessary to know the
ratio, not the magnitudes, of k, and k,; thus, if both L, and L, are
multiplied by the same positive constant, the entire function L is just
multiplied by that constant and the optimal point estimate is unchanged.

For a second example, consider a class of exponential loss functions :

Iy|erte—1]| if a—6=0,
Lo(a_a):{
if a—0<0,
3.9) and
k,|e *—1]| if a—6=0,
Lu(o—a)={
if a—60>0.

The first order condition (3.5) is

(3.10) E'l:m(e—rﬁ) — [ !s | ku ]e—a(r+s) .

Eze) Lrlk

For this class of exponential loss functions, L is strictly convex if >0
and s>0.

It should be noted that if F(#) is not continuous, Proposition 3.1
still holds, but Proposition 3.2 is inapplicable. More general necessary
conditions for optimality are given by Proposition 3.3.

ProposiTION 3.3. If L, and L, are (not necessarily twice) differ-
entiable on (0, ), and a is optimal, then

(3.11) EiclLila—0)1= Eyz o Li(6—a)]
and
(3.12) Eicd Li(@a—0)1Z Eps o[ Li(6—a)] .

This follows from examination of the left- and right-hand deriva-
tives of EL at a; optimality requires that the former be nonpositive
and the latter be nonnegative. If the assumptions of Proposition 3.1
are met, then (3.11) and (3.12) are sufficient for optimality; if the as-
sumptions of the corollary are met, they are sufficient and the optimal
value of a is unique. Furthermore, if either (1) Lj0)=L{(0)=0 or (2)
F(6) is continuous, then (3.11) and (3.12) reduce to (3.5). For the power
loss functions with »>1 and s>1, Lj0)=Ly)0)=0. If r=s=1, (3.11)
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and (3.12) are
kP@<a)<k,P@=a) and kP@<a)=k,P@>a).

For the exponential loss functions, L{(0)=k,|r| and L[(0)=E,]|s|, so that
(3.11) and (8.12) are

ko|7|e* Eycale™) Sk |s|[e™* Eys o(e”)+ P(6=a)]
and

ko|7|[e* Eocale™)+ P(0=a)] Zk.|s|e”*Eys o(e”) .

4. Optimal estimates for power loss functions and the normal distri-
bution

In this section we discuss the determination of optimal estimates
when the loss function is of the form (8.7) with r=s=n and the dis-
tribution f(6) is a normal distribution. Notice that, in terms of the
discussion following (3.8), we are only considering one of the two types
of asymmetry possible for the general class of power loss functions, the
asymmetry which occurs when k,#k,. This situation could arise, for
example, when losses are linear in terms of money but utility is not
linear in money. Suppose that in terms of money, the loss function is

cla—6) if a=4,
L(a, 6)=
c.(0—a) if a<@,

and the utility function for negative changes in total monetary wealth is
U(dx)=—|dz|".

Then, in terms of utility, the loss function is of the form (3.7) with
r=s=mn, k,=c, and k,=c".
If r=s=mn, (3.8) becomes

k., _E* . (a—06)"!
4.1 Py _L-\@TY)
(4.1) ke EZ@0—a)!

The right-hand side of (4.1) can be evaluated for any choice of a. But
this result is precisely the loss ratio k,/k, for which a is optimal. By
following this procedure for a large number of values of a, a table can
be developed relating the optimal value of a to the loss ratio for the
standard normal distribution.

From (4.1),
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k. _ E—: <nfl)(—1)‘a""“E':w(ai)

ko S (P e e

where
Ez(6)=[E(6")—E2(6")] .

But E(#) is zero if 4 is odd and 1-3---(¢—1) if ¢ is even. Furthermore,
the partial moments E°.(¢%) are

Fy(a) if 1=0,
Ee (6))={ —fala) if i=1,
—a @)+ (E—1)E* (078  if i=2,

where F. and fy. are the cumulative distribution function and density
function of the standard normal distribution (see [15]). To simplify the
notation, let G=Fy.(a) and g=fy(a). Then

;G

_T if n=1,
e if »
k aG+g .
4.3 =] if n=2,
43) k| a0—G)—g
a2G+ag+G if n=3.

- a'1—-G)—ag+(1-G)

In general, if we let ¢, and u, represent the numerator and denominator
on the right-hand side of (4.3) for a particular value of n (ignoring the
sign preceding the entire term), then it can be shown that the follow-
ing recursive relationship holds:

ka _ aet| @i+ (M—2)t,_, .
4.4 2 =(—1)""! ! f n=8.
44 ky (=1) [aun—l+(n—2)un—2:| nns

Using the preceding formulas, tables of the loss ratios associated
with different optimal estimates were found for a=0(0.01)5 and n=
1(1)6. Values of F. and fy. to 15 decimal places were used [13]. The
results are summarized in Table 1. Because of the symmetry of the
normal distribution, it is only necessary to consider positive values of
a. Such values will be associated with loss ratios greater than one;
whenever k,>k,, the optimal estimate should be greater than zero to
reduce the higher expected loss of underestimation. If the loss ratio
is less than one, then the optimal estimate will simply be the negative
of the optimal estimate under the reciprocal loss ratio. For example,
if m=1, the optimal estimate is 0.97 if k,/k,=5 and —0.97 if k,/k,=1/5.
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The first result is intui-

Two points of interest are that (1) as k,/k, increases for a given =,

the optimal estimate increases, and (2) as n increases for a given ratio
k./k,, the optimal estimate moves closer to the mean (in Proposition 4.1,

we prove slightly more general assertions).
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tively obvious; all other things being equal, a higher ratio causes the
decision maker to increase a in order to reduce the relatively higher
expected loss of underestimation. The second result indicates that as
n increases, he will reduce the amount by which he shifts @ away from
the mean. This is because as 7 increases, the seriousness of errors of
more than one unit also increases. If the decision maker shifts a far
to the right of the mean in order to reduce the expected loss of under-
estimation, the corresponding increase in expected loss of overestimation
increases with increasing n. In terms of the utility example presented
at the beginning of this section, the concavity of U when n>1 (indi-
cating a risk-avoider) shifts the optimal estimate closer to the mean
than it would be with a linear utility function.

Table 1 can also be used to find optimal estimates if # is normally
distributed with mean g and variance . An estimate a of 4 is optimal
if and only if a*=(a—py)/s is an optimal estimate of 6*=(0—pg)/o. But
f(6%) is a standard normal distribution, so a* can be read from Table 1,
and a=pg+osa*. In general, then, Table 1 gives the optimal estimate
in standardized units (standard deviations from the mean) corresponding
to various values of k./k, and n. For example, suppose that n=3, k=
14, k,=2, =100, and ¢=10. Since k,/k,=1/7<1, we look in Table 1
under the reciprocal loss ratio, 7, and find the value 0.61. Thus, a*=
—0.61, and the optimal estimate is a=p+oa*=93.9.

A byproduct of the use of (4.1) is a table of partial and complete
moments about an arbitrary point a for various values of a. Due to
lack of space, the partial moments E?.(a—68)" are presented in Table 2
only for n=1(1)6 and for a=0(0.10)3. These partial moments are useful
in computing the expected loss of the optimal a (or the expected loss
associated with nonoptimal values of a, as we will discuss in Section 6).

It should be noted that the procedure used to develop Tables 1 and
2 is only applicable if » is a positive integer. An alternative method,
one which can be applied for any positive n, is to use numerical inte-
gration to evaluate (4.1). To check the accuracy of the numerical pro-
cedure, it was carried out for ¢=0(0.01)5 and »=1(1)6, with the inter-
val [—5,5] divided into 1200 subintervals. The results agree with
Table 1. However, for larger values of a (i.e., for any n, those values
leading to a loss ratio greater than 1,000), the numerical procedure was
quite inaccurate.

In this section we have considered the case in which r=s=n. If
r+s, a search algorithm can be used to find the optimal value of a
(e.g., see [14], Ch. 2). To simplify matters, Table 1 can be used to
find either a lower bound or an upper bound for the optimal estimate.
Assume that »=1 and s=1, and let a(r, s, t) denote an optimal estimate
for given », s, and t=k,[k,.
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Table 2. Partial Moments E®.(a—68)"

n

a
1 2 3 4 5 6

0.0 .3989 .5000 L7979 1.5000 3.1915 7.5000
0.1 .4509 .5849 .9604 1.8508 4.0265 9.6567
0.2 .5069 .6806 1.1499 2.2719 5.0540 12.3703
0.3 .5668 .7879 1.3699 2.7748 6.3121 15.7676
0.4 .6304 .9076 1.6239 3.3724 7.8446 19.9996
0.5 .6978  1.0404 1.9158 4.0790 9.7026 25.2461

.7687 1.1870 2.2495 4.9106 11.9444 31.7194
.8429 1.3481 2.6294 5.8847 14.6369 39.6695
.9202 1.5243 3.0599 7.0208 17.8561 49.3890
1.0004 1.7163 3.5455 8.3400 21.6882 61.2193
1.0833 1.9247 4.0913 9.8653 26.2304 75.5568

moooo
O W 0NN

1.1 1.1686 2.1498 4.7020 11.6217 31.5920 92.8596
1.2 1.2561 2.3923 5.3829 13.6363 37.8951 113.6554
1.3 1.3455  2.6524 6.1392 15.9381 45.2761 138.5493
1.4 1.4367  2.9306 6.9761 18.5583 53.8863 168.2325
1.5 1.5293  3.2272 7.8993 21.5305 63.8931 203.4920
1.6 1.6232  3.5424 8.9143 24.8901 75.4813 245.2203
1.7 1.7183  3.8765 10.0267 28.6749 88.8540 294.4263
1.8 1.8143  4.2298 11.2421 32.9251 104.2338 352.2464
1.9 1.9111 4.6023 12.5665 37.6831 121.8637 419.9567
2.0 2.0085  4.9942 14.0054 42.9936 142.0089 498.9858
2.1 2.1065  5.4057 15.5649 48.9035 164.9572 590.9279
2.2 2.2049  5.8368 17.2508 55.4624 191.0206 697.5573
2.3 2.3037  6.2877 19.0690 62.7219  220.5364 820.8429
2.4 2.4027  6.7583 21.0254 70.7360  253.8682 962.9640
2.5 2.5020  7.2488  23.1260 79.5614  291.4076 1126.3262
2.6 2.6015 7.7591 25.3767 89.2569 333.5747 1313.5785
2.7 2.7011 8.2804  27.7835 99.8836  380.8197 1527.6311
2.8 2.8008 8.8396  30.3523 111.5053  433.6241 1771.6738
2.9 2.9005  9.4097  33.0892 124.1879  492.5018  2049.1945
3.0 3.0004  9.9998  36.0002 137.9999 558.0002  2363.9998

PRrROPOSITION 4.1. a(r, s, t) is a monotone increasing function of ¢
for fixed r and s, a monotone decreasing function of » for fixed s and
t, and a monotone increasing function of s for fixed » and ¢.

Let

_Ei(a—0) "

(4.5) q W .

From (3.8), an optimal a is such that

q=str .
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Thus,
dg=—Laryr Lds+ S d
r r

But

dg=Y gq—%[0a ;. . da ; -@idt] ,

= da da[a s
so we have

or r da’ s r da ot r da’

where dq/da is evaluated at a(r,s, ). Since dqg/da>0 (from (4.5) and
earlier continuity assumptions), r=1, s=1, and ¢>0, the proof of the
proposition is completed. It should be noted that in the general case
given by (3.1), if L, and L, are multiplied by positive constants k&, and
k., then the optimal a is a monotone increasing function of t=Fk,/k,.

COROLLARY. For a given loss ratio k,/k,=t, a(r,r,t) and af(s,s,t)
are lower bounds for a(r, s, t) if r<s and upper bounds for a(r,s,t) if
r=s.

The results in Table 1 indicate that a(r, r, t) is a tighter lower or
upper bound than af(s, s, f) if £>1 and af(s, s, t) is a tighter lower or
upper bound than a(r, r, t) if t<1. For example, suppose that k,/k,=2,
7=0, ¢=1, r=2, and s=3. From Table 1 and Proposition 4.1, the opti-
mal estimate must be greater than 0.28. The expected loss associated
with any estimate a is

(4.6) EL(@)=kw E*.(a*—0*) + k.o E= (6*—a*y

where a*=(a—p)/s, 0*=(0—p)/s, and the partial expectations are taken
with respect to the standard normal distribution. Using the tables of
partial and complete moments discussed above and the fact that E(x)
=E°. (x)+E(x), EL(a) can be determined for any value of a. Search-
ing the region above 0.28 yields an optimal value of 0.46. Similarly,
suppose that the loss ratio is still 2 but that »=3 and s=2. An upper
bound is a(8, 8)=0.22, and a search yields an optimal estimate of 0.02.
Note that for this last example, it would not even be possible to predict
whether @ would be positive or negative. A loss ratio greater than
one suggests that a should be positive, but »>s suggests that a should
be negative; here the result is very close to zero, although this will
not always be the case.



28 ROBERT R. BRITNEY AND ROBERT L. WINKLER

5. Optimal estimates for exponential loss functions and the normal
distribution

In this section we discuss the determination of optimal estimates
when the loss function is of the form (3.9) with r=s=n and the dis-
tribution f(#) is a normal distribution. For r=s=mn, (3.10) becomes

ku — ng(e-—no)] 2an
1 Sy | Dol ) .
1) o [ Ez@) J°
Since
(5.2) E° (¢)=e"""Fy(a—t) ,
we can rewrite (5.1) as follows:

ku _ F .(a+’n) 2an

.3 Su | LETR) .

53) K [ 1— Fy(a—mn) ]"

For any choice of a, the right-hand side of (5.3) can be evaluated, re-
sulting in the loss ratio k,/k, for which a is optimal. Thus, a table of
optimal values can be determined, just as in the case of the power loss
functions. This was done for n=—1.5(.5)1.5 and a=0(0.01)5; the results
are summarized in Table 3. Once again, as k,/k, increases for a given
n, the optimal estimate increases. Also, as n increases for a given
ratio k./k,, the optimal estimate moves closer to the mean.

Some of the comments made in Section 4 concerning power loss
functions also apply if L is exponential. First, just as for Table 1,
Table 3 can be used to find optimal estimates if # is normally distri-
buted with mean g and variance ¢°. Second, since (5.3) holds for any
value of n (not just integer values), it is unnecessary to use numerical
integration when working with exponential loss functions and the nor-
mal distribution, since (5.3) is both easier to use and more accurate.
Third, if r>0, s>0, and r+s, Proposition 4.1 still holds, and its corol-
lary can be used to find a bound for the optimal estimate. Such a
situation would occur with the loss function given in terms of money by

co{la—0) if a=0,
L(a, 0)=
c.(0—a) if a<é,

and the utility function for money given by
U(x)=—e".

The loss function in terms of utility is then of the form (3.9) with
ky=k,=e*, r=12c, and s=1c,, where w denotes current wealth. The
expected loss associated with any estimate a is
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Table 3. Optimal Values of a for the Standard Normal Distribution
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and Exponential Loss Functions with r=s
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If 6 is normally distributed with mean zero and variance one, we can

apply (5.2) to get
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2
(5.5) EL(a)=kol exp (ar+£2->FN.(a+r)—FN.(a)

+k.

exp(——as+£22->[1——FN.(a——s)]—[I—FN.(a)] .

6. Sensitivity analysis

An important point which has not been discussed is the sensitiv-
ity of Bayesian point estimates to misspecification in the loss function.
For instance, how much does the decision maker stand to lose by using
the mean of his distribution as an estimate when in fact some other
value is optimal? Using formulas such as (4.6), the appropriate expected
losses can be computed and compared.

For example, suppose that # is normally distributed with mean 100
and variance 100 and that the appropriate loss function is a power loss
function with r=s=n=38, k,=14, and k,=2. In Section 4 we found
the optimal estimate for this problem to be 93.9. Using (4.6),

EL(93.9)=17,762 .
The expected loss associated with a=p=100 (a*=0) is
EL(100)=12,768 .

Thus, using the mean instead of the optimal estimate causes the deci-
sion maker to suffer an increase in expected loss of 12,768 —7,762=
5,006, or about 649.

Suppose that the decision maker realizes that n=3 and k,/k,=1/7,
but to simplify his problem he acts as though »=1 (linear loss). This
means that he simply finds the k,/(k,+k,)=1/8 fractile of his distribu-
tion, which is 88.5. Thus, his expected loss is

EL(88.5)=10,934 .

This is not as bad as using the mean, but it still represents an increase
in expected loss of 3,172, or about 419, in comparison with the optimal
estimate.

Using this approach, the percentage increase in expected loss cor-
responding to certain entries in Table 1 was computed, (1) using the
mean of the distribution instead of the optimal @ and (2) using the opti-
mal value for n=1 instead of the true n. The results are presented
in Tables 4 and 5. For instance, if k,/k,=16 and n=4, EL increases by
1419, if the mean is used and by 1269 if the correct loss ratio is used
but it is assumed that n=1. In general, if the mean is used, there
is a greater increase in EL (as compared with the EL of the optimal
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Table 4. Percentage Increase in Expected Loss for Power Loss
Functions and the Normal Distribution if a=g is used
Instead of the Optimal Value of a

n
kulko
1 2 3 4 5 6
1.0 0 0 0 0 0 0
1.2 0.7 0.5 0.5 0.5 0.5 0.5
1.4 2.2 1.8 1.7 1.6 1.6 1.5
1.6 4.4 3.6 3.3 3.1 3.1 3.0
1.8 6.9 5.6 5.2 4.9 4.8 4.7
2.0 9.7 7.8 7.2 6.9 6.7 6.6
2.5 17 14 13 12 12 12
3 26 20 19 18 17 17
4 42 33 30 29 28 28
6 77 59 53 51 49 48
8 111 84 75 71 68 67
10 144 107 95 90 86 84
20 302 214 185 172 164 159
30 452 310 263 241 229 220
40 597 399 334 304 286 275
60 876 565 463 416 388 371
80 1146 719 581 516 479 456
100 1410 867 691 609 563 533

Table 5. Percentage Increase in Expected Loss for Power
Loss Functions and the Normal Distribution
if it is assumed that n=1

n
ku/ku
2 3 4 5 6
1.0 0 0 0 0 0
1.2 0.1 0.4 0.7 1.1 1.5
1.4 0.6 1.6 2.9 4.3 5.8
1.6 1.0 3.0 5.4 8.1 11
1.8 1.8 5.1 9.1 13 18
2.0 2.3 6.7 12 18 24
2.5 4.1 12 21 32 43
3 4.9 15 27 41 56
4 8.0 24 44 67 93
6 12 37 68 107 152
8 15 45 85 136 197
10 16 51 98 158 231
20 22 70 140 235 359
30 23 77 158 270 422
40 25 83 173 302 479
60 26 88 188 333 540
80 27 93 200 361 593
100 27 95 205 374 620
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Table 6. Percentage Increase in Expected Loss for Exponential
Loss Functions and the Normal Distribution if a=g
is used Instead of the Optimal Value of a

n

k.fk,
—-1.5 -1.0 —0.5 0.5 1.0 1.5

1.0 0 0 0 0 0 0
1.2 1.0 0.7 0.8 0.8 0.8 0.5
1.4 3.4 3.7 2.6 2.2 1.7 1.6
1.6 6.7 6.6 6.2 4.2 3.7 3.1
1.8 11 9.8 8.0 7.0 5.5 4.8
2.0 15 13 10 9.0 7.4 6.8

2.5 27 24 18 15 13 12

3 41 34 28 21 18 17

4 67 58 50 36 32 28

6 124 107 91 65 56 49

8 182 158 133 92 78 69

10 241 208 170 118 99 87

20 535 459 378 240 194 164

30 830 709 577 350 276 229

40 1128 958 773 453 351 288

60 1719 1455 1159 648 488 388

80 2308 1949 1539 830 606 479

100 2898 2442 1917 1005 728 564

estimate) as n decreases and as the loss ratio k,/k, increases. If it is
assumed that n=1, there is a greater increase in EL as m increases
and k,/k, increases, although for large values of k,/k, the percentage
increase in EL seems to level off somewhat.

For the exponential loss functions, we can use (56.5) to determine
the expected loss of any a. For the optimal estimates given in Table 3,
the percentage increase in EL was computed under the assumption that
the mean was used instead of the optimal estimate. The results are
presented in Table 6. For example, if k,/k,=10 and n=1.5, EL in-
creases by 879 if the mean is used rather than the optimal a=0.70.

The results of the sensitivity analysis indicate that it may be quite
costly to use nonoptimal estimates. This, of course, depends on the
particular loss function and distribution and on the particular nonoptimal
estimate that is chosen. The question of the sensitivity of EL to the
use of nonoptimal estimates is, after all, a relative matter. In some
situations, the cost of determining the optimal estimate may be greater
than the potential savings unless tables such as Table 1 and Table 3
are available.
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7. Summary and discussion

In this paper we have investigated the properties of Bayesian point
estimates under loss functions other than the simple linear and quad-
ratic loss functions. The results of Section 2 strengthen the contention
that the mean is a good “all-purpose” estimator in the symmetric case
by demonstrating that it is optimal (in the sense of minimizing expected
loss) for a wide class of symmetric loss functions and distributions.
Although there are many situations in which both the loss function
and the distribution are symmetric, violations of one or both of these
conditions are quite common. As a result, the case in which no sym-
metry assumptions are made is of much interest. In this case, it is
convenient if the expected loss, EL(a), can be shown to be a convex
function of a; Proposition 3.1 indicates that EL is convex if it con-
verges and L is convex. The convexity of EL means that any local
optimum is a global optimum, thus simplifying the determination of an
optimal estimate. Some necessary conditions for optimality are given
in Propositions 3.2 and 3.3.

Using the formulas developed for the general case, numerical results
are presented for two special cases: power and exponential loss functions
and the normal distribution (these results are also applicable for certain
“modified” power and exponential loss functions similar to the “modified”
linear and quadratic functions discussed in [9]). For the power loss func-
tions, if the overestimation and underestimation loss functions involve
the same power (i.e., if r=s=mn), then the optimal estimate can be
determined from Table 1 for n=1(1)6. Of course, numerical methods
could be used to evaluate (4.1) for any n>0. This involves the calcu-
lation of certain partial and complete moments involving a@ and 4. For
the exponential loss functions with r=s=mn, optimal values of a for
n=—1.5(.5)1.5 are given in Table 3. For a given loss ratio k,/k,, the
Bayesian point estimate moves closer to the mean as » increases. For
a given n, the estimate increases as the loss ratio increases; when
k.Jk,=1, the mean is optimal. When r+s, the determination of a is
slightly more difficult; the corollary to Proposition 4.1 gives a bound
for a, and this can be used as a starting point for a search procedure.

The results of the sensitivity analysis presented in Section 6 indicate
that in some situations it may be quite costly to use nonoptimal esti-
mates. This suggests that it is important to carefully specify the loss
function for any given Bayesian point estimation problem and to deter-
mine the optimal estimate under that loss function, using tables such
as Tables 1 and 3 when applicable. The use of the mean as a general
“all-purpose ” estimator may result in a large increase in EL (as compar-
ed with the EL under the optimal estimate) if the loss function is asym-
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metric. As we have indicated, there are many situations in which
symmetric loss functions or even simple asymmetric loss functions such
as the linear loss functions of the form (1.3) are inappropriate, parti-
cularly when the decision maker’s utility function for money is not
linear. In this paper we have determined optimal estimates for two
rich classes of loss functions (the power and exponential loss functions,
which can be viewed as combinations of linear loss and nonlinear utility)
and the normal distribution; also, we have discussed how optimal esti-
mates can be determined for other loss functions and distributions.
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