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1. Introduction and summary

¢ Ordered partitions’ distinguish between the various ways of writing
the same partition. They manifest themselves when one is interested
in the number of ways a product of » distinct primes can be factored
[8] or the number of ways of distributing » distinct objects into n boxes
with empty boxes permitted [5] or the number of permutations of n
elements with ordered cycles [4], etc. In statistical theory, they have
been found useful for multiplying polykays [2] through their represen-
tation in terms of partitions. For a polykay {a}, if the corresponding
symmetric mean is denoted by {(a), then [3]

{ay ={a} +3 {8}

where the summation is over all distinct subpartitions 8, of «. Similar
multiplication procedure may in fact be developed for any sample sym-
metric function admitting a representation in terms of partitions.

In this paper, we study some properties of ordered partitions, and
propose a technique for generating their complete set for a given un-
ordered partition. We also discuss the number of ordered partitions of
a given weight and its generating function [5], [8] from a statistical
viewpoint. Some statistical applications of the theory of ordered parti-
tions are indicated.

2. Definitions

DEFINITION 1. An ordered partition of weight m is a list of m
symbols a=a,--a, such that either iaj or 1&4j5v( J); t,7=1,2,
---,m, where iaj or 14j according as a;=a; or a;#a;.

Example. 1122345,1212345, 2132451,--- are various ordered
partitions from the 5-part partition 2,2,1,1,1 of weight 7.
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DEFINITION 2. Let a=a;:-a, and §=4,---8, be two ordered par-
titions of weight m. « is said to be an ordered subpartition of g (a<g)
iﬁ 'l:a]#@ﬁjV(’l:,j); i,j=1,2,°",m.

Ezxample. 112324 is an ordered subpartition of 112123.

a and B are said to be equivalent if taj=i8j and iBj=>tajv(i, j);
1, 7=1,2,---, m.

DEFINITION 3. A lattice is a system (S, <, A, V) where S is a set
of elements, < is a binary relation on S satisfying the reflexive, anti-
symmetric and transitive laws, and any two elements «, 8¢S have a
g.l.b. aAp and a Lu.b. aVp.

DEFINITION 4. A first element 0 of an ordered set (S, <) is an ele-
ment which satisfies the relation a=0vaeS.

DEFINITION 5. A last element 1 of an ordered set (S, <) is an ele-
ment which satisfies the relation a<lvaceS.

If first element and/or last element exist, they are unique.

Erample. In the set S, of ordered partitions of weight m, the
one-part partition 11---1 and the m-part partition 12--.m are the last
and the first element respectively.

DEFINITION 6. An element S¢S, is said to be a complement of
a€S, if aAB=0 and aVp=1.

DEFINITION 7. A lattice S,, with 0 and 1 is said to be comple-
mented if for every a€S,, there is o/ € S,, such that aAa’=0 and aV
a'=1. o is not necessarily unique.

DEFINITION 8. A subset of a lattice S, in which every pair of ele-
ments has a g.1.b. and a l.u.b. is called a sublattice.

DEFINITION 9. Let a; denote the column vector formed by all or-
dered partitions of weight m,. Then the Kronecker product a,® a,&
-+*Qa, is the column vector whose components are the ordered parti-
tion 11.-.122...2.--nn-.-n and all its ordered subpartitions.

= ° e
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Example.

1122
11 ® 117 | 1123
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Throughout this paper partition (subpartition) will stand for ordered
partition (ordered subpartition) unless otherwise mentioned.

3. Set of ordered partitions as a lattice

Here we outline the construction of g.l.b. and l.u.b. under which
the set S, of partitions of weight m, with the subpartition partial or-
dering, forms a lattice.

Let a=a; : a,, f=p-- B be two partitions of weight m.

Let 6=aAB, 6=6, -5, be defined as the set of ordered pairs (a;, )
(a2, B2): - (&, Br) such that 16 j=1a4, i85V (4, 5); 4, 5=1,2,---, m.

Let p=aVp, p=p---p, be defined as follows:

Set py=1. If for any i=1,2,---, m, 3k such that lak and kg1,
set p;=1 (if 1ai then k=7). Let I, be the set of all integers 4 such
that g,=1. If for 4, € I, and for some j=1,2,--., m, 3k such that i,ak
and kBj, set y;=1. Continue until unable to find such k& for some j.
If yy=+--=p,=1, we are done and  is a one-part partition. Otherwise,
let 4, be the first integer not in I, let ti,=2. Let I, be the set differ-
ent from I, and constructed in the same manner as I,. If I, and I
exhaust the whole set 1,2,--.,m then we are done. Otherwise con-
tinue the process with I,---. With p constructed as above, ipj=3k
such that 1k and kB j.

It can easily be seen [2] that, under this definition of g.l.b. and
Lu.b., the set S,, of partitions of weight m, with the subpartition par-
tial ordering, forms a lattice.

4. Some theorems

THEOREM 1. The set S, of all partitions of weight m, with the sub-
partition partial ordering, forms a complemented lattice.

Proor. It is known [2] that S, is a lattice. In order to show that
S, is a complemented lattice, for any a€ S,, a#0,1, construct ge¢ S,
such that aAp=0, aVVB=1, as follows. If ay, =y, =ay, = =a,, set
B, =B1s B,=B:,- -+ where Bi#p,---. Since a+#0, 1, the whole set of a’s
will not be exhausted. From rest of the a’s choose a,, =ay,=---=ay,
and set 8, =B, By, =p:, - -+. Continue until the whole set is exhausted.
Obviously B is a partition of weight m and hence g¢ S,,.

Let 6=aAB=(a, B) (a2, Bo): * *(am, Bn) Where 15 or 18514 7.
From the construction of g it is clear that whenever i#j, i8j and
vice versa, we have 145V (¢, 5); %, 7=1,2,---, m. Thus 6 is a m-part
partition of weight m, i.e. §=0.

Let p=aVp, where p is constructed such that if for any (¢, 5)3k
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such that tak and kpj then ipj. For each (3, 7); 4,5=1,2,---,m,
we can always find such k.

alh:aii,: “ee =alz.-

(If 7 j then k=j. Otherwise take the row containing «; and the column
containing «;, and set k as the suffix of the position where these two
intersect.) Thus 1pjVv(®, j); %, j=1,2,---, m and hence p is a one-part
partition, i.e. £=1. Hence S, is a complemented lattice. (If a was
0,1, choose =1, 0).

Example. Let a€S;,, a=12314512267. Here aj=a,=ay, set =1,
ﬁ4—_—2, ﬁ7=3. Also ay=ag=ay, SO ‘32:1, ‘Bs=2, ‘39=3. Similarly ﬁg'—-—l,
ﬂ5:1, ﬁﬁzl’ ‘3“):1, ﬁn=1, SO that ﬁ:11121132311.

d=ang=(1,1)(2,1)(3,1)(1,2)(4,1) (5, 1) (1, 3) (2, 2) (2, 3)
(6,1)(7,1).

Clearly 6,#8;% - - #0dy, so d=aAB=0.

p=aVp. a1=a4=a-,=>;11=/z4=p7=1 ’ ay=ay, Bi=PFs>m=s;
=0, Bi=F>m=th; ay=ay, Bi=PF=PF=p=pF=Ppu=PFu>
!11:#2:#3:#5:#6:!110:#11:1 .

Thus M=pe="+" =y, SO ”:a\/ﬂzl.

THEOREM 2. The set of subpartitions of any partition of weight m
forms a sublattice.

PROOF. Let a=a,---a, be any partition of weight m. Let S/ be
the set of all subpartitions of a. Since any partition is its own sub-
partition, e € S,.

Let 8, 7€, and 6=BA7, p=BVy. Form 4§ and g as in Section 3.
Now 6=<a iff 1dj=>tajv(,J); 1,5=1,2,---,m. But 167785 and
1rj=>1aj since f<a, y<a. Hence 6<a i.e. §€S,.

Again pu=<a iff ipj=>iaj. But ipj=>3k such that 18k and kyj
=>tak and kaj since f<a, y<a, hence taj. Thus p=<a ie. peS,.
Hence S/, is a sublattice.

It is interesting to note that the first element of the sublattice is
the same as that of the lattice itself, whereas the last element is the
partition whose subpartitions are being considered.

COROLLARY. The components of the Kronecker product of ai, a,,
<o, &, form a sublattice of the lattice of partitions of weight m,+m,+
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<My,
ProoF. Obvious on using Definition 9.

THEOREM 3. If a=111...1222...2...nm---n 18 a partition of

——— ——— ~—————
m,

my My
weight m,+my+---+m,, there are r,---r, subpartitions of a, where r,
18 the mumber of partitions of weight m,.

PrOOF. In a, if we replace 11--.1 by any other partition of weight
m,, we get a subpartition of a, thus yielding r, subpartitions of «. In
any of these, replace 22...2 by any other partition of weight m,, thus
obtaining »,-r, subpartitions of «. Continuing this process, we obtain
Ty-Ty+ Ty« -7, Subpartitions of a.

COROLLARY. A lattice of subpartitions of ra s isomorphic to the
lattice of subpartitions of a, where r is an r-part partition of weight r.

5. A scheme to generate ordered partitions

It seems desirable to develop a scheme to generate the partitions
systematically, so that none are missed, since for higher weights the
number of partitions increases fast. For weights 5, 6, 7, 8, there are 52,
203, 877, 4140 partitions respectively.

We illustrate the technique by generating all partitions originating
from the unordered partition 332. The first partition, writing the sym-
bols in ascending order, is 11122233. We write it as 11122233 to
effect distinction between identical symbols, where necessary. The tech-
nique is to take one symbol at a time, and move it left successively
till it reaches i) extreme left if the symbol has not occurred before,
ii) identical symbol if it occurred earlier. In the example, no 1 is to

be moved, 2 moves upto the extreme left, 2 upto 2, 3 upto 3, etc. All
8!/3131212! =280 partitions, in the order of their generation, are listed
in the Appendix. Details follow.

Start with 1’s, no permutation is needed. Shift 2 one place left
successively, till it reaches extreme left. We get the first row below.
Now shift 2 one place left, till it gets next to 2, unless it is already

so. Continue till 22 reach the extreme left, obtaining

111221233 112/12233 121112233 21112233
11221233 12121233 21121233
12{2111233 21211233

212111233
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These 4+3+2+1=10 partitions appear in the first row of the Appendix.

Normally we would shift 2 one place left till it gets next to 2,
but when we have runs of the same length, e.g. 111, 222, we do not do

so. Shifting 2 here would result in repeated partitions, e.g., 21122133

is the same partition as 12211233.

Shifting 3 one place left successively, till it reaches the extreme
left, in all partitions in the first row of the Appendix, we get the next
6 rows. Thus we obtain 70 partitions.

Next shift 8 one place left in the above partitions till it gets next

to 3, unless already so, and continue till 33 reach extreme left. We
obtain successively the next 6, 5, 4, 3, 2, 1 rows in the Appendix, ac-
counting for 280 partitions in all.

We might note that there would still be 280 partitions if we were
looking at the unordered partition 333. Here the partitions would be
all those in the Appendix, with a 3 appended at the end of each. The

3 would not be moved since this is a case of runs of same length. In
general, partitions from r7r--.r may be obtained by attaching an n at

~—

the end of all partitions from »7r...r r—1, there being (nr)!/(r!)'n!=

n-1
(mr—Y( )Y (r—1)(n—1)! of them.
Dwyer and Schaeffer of the University of Michigan, using a similar
scheme, have written a computer program for generating partitions,
and have used it to generate all partitions through weight 8.

6. Generating function for ordered partitions

Let P(x)=e" i (Nn.xz™/m!), where N, denotes the number of parti-
m=0
tions of weight m, with N;=1. Then, we observe upon differentiation,

‘P(m)(())zéo (T)erNm+1 .

Thus, P(x) is the generating function of the number of partitions. If
N'N¢... signifies N,,,,..., one could write

P(x) — ezeNx — e(N-H)a: s

so that
Npp1=P™(0)=(N+1)".
THEOREM 4.
Nme:i ’r_m.:i ﬂ
= B S
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ProoF. The result holds for m=0,1. Let us assume that the re-
sult is true for all m<n, then we show it is true for n+1. Thus

,’.n+l _ oo (,r+1)n+1
=1 rl = (r+1)!
3 (r+1)

=7l

Il

<

COROLLARY 1. N, 1is the mth ordinary moment of P(1), the Poisson
distribution with parameter 1, as N,=e"' > (r™/r!) according to the
r=0
theorem.

COROLLARY. 2. The generating function P(x) is €“"°, the moment
generating function of the P(1) distribution.

COROLLARY 8.

Nn+l=%(1"+%+—§+---> (Dobinsky’s formula) [5).

PROOF.
N,,,=(n+1)th moment of P(1)

=3¢ T;;l =’:‘ > ('r:r-nl)! '
Remark 1. By considering N,,,+1=§o (ZL)N,, it can be shown that if
/1 -1 0 0 0
1 (1) -1 o 0
A=y (3) (3) 1o |
(1) () (3)- (),
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then, N,.;=|A| and N,=|B], where B is the submatrix of A obtained

by retaining the first » rows and columns.
For example,

Nl () (g) [
() () 6)

Remark 2. Stirling numbers s(n, k) of the second kind for a given
weight are generated by, [4],

el(ez—l):i _xl< "os(n’ k)2k> .

n=0 n! \k=

In our context, s(n, k) denotes the number of ordered partitions
obtained from the k-part partition of weight =, i.e.,

s('n, k): 2 (p{’l. . .p{_’r) ,
o=k
where

n!

— T1e e oply)— *
Xpdli=n and  (pr:--p77) (p)™1-« - (p,)7r11,) - - - T,

This provides a method for computing Stirling numbe‘rs. Moreover, by
considering the moment generating function of P(2),

3

=232 s(n, k)A*
0

k

and for P(1),

#,=31s(n, k)=N, .
k=0

7. Applications

Using the theory of this paper, we can define generalized h-statistics
[6], which estimate products of central moments unbiasedly just as
polykays estimate products of cumulants.

If () denotes a generalized h-statistic, then for a partition « of
weight m, the mth degree symmetric mean

(@=33 (6
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with B, having at most as many parts of length >1 as those of «.
Thus, for example, we have

A1117y=11117)+(1112¢)+(11217)+(12117)+(21117)
+(11237)+(12137)+(12317)+(21137)
+(21317)+(23117)+(12347) .

Now if ¢a) and (a) denote the vectors of symmetric means and all
h-statistics of any weight m, then

{ay=4(a)

where 4 is a non-singular upper triangular matrix with 4,,=1 if o/<a’
and o’ has at most as many parts of length >1 as those of of, and
4,,=0 otherwise.

As for polykays [2], we have developed a method, using ordered
partitions and its properties, to express powers and products of gener-
alized h-statistics as linear combinations of such statistics. Also we
have extended Carney’s method [2] for obtaining double products of
polykays to multiple products [7].
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