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1. Introduction and summary

In recent years, a large number of articles on the exact and asym-
ptotic distributions of multivariate test criteria have appeared in various
journals. These include the distributions of, one two three to several
latent roots of Wishart matrices, products ratios and other functions of
latent roots of Wishart matrices and that too for the real as well as
for the complex variable cases. Due to the multiplicity of articles on
parallel topics it appears that some misleading implications have crept
in some of these articles. Articles on the exact distributions of multi-
variate test criteria, where the properties of Meijer’s G-function and
hypergeometric function are used, are examined in this article. Some
of the misleading implications and shortcomings are pointed out and a
general technique to solve the problems under consideration is also given
in this article.

Meijer’s G-function is defined in ([3], p. 207) as follows.

m,n a'l!""ap
1 1110, +s) 1T I(1—a,—s) |
" 2ni So i — zds,  i=(=1)".
,J;,[“ I'(1—b;,—s) ,;111 I'(a;+s)

For convenience s is replaced by (—s) in (1.1). C is a contour separat-
ing the poles of I'(h;+s), j=1,2,---,m and I'l—a;—s), j=1,2,---,m
and the various types of contours and the various existence conditions
are discussed in ([3], p. 207) and hence the details are omitted here.
a,’s and b,’s are complex numbers such that

1.2) 1—a,+'r=#—bk—'v ’ j=1,2,---,m; k=1,2,---, m;
r,v=0,1,---,0=n=p, 1=m=q.

An empty product is interpreted as unity. From the structure of the
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Gammas in the integrand of (1.1) it is apparent that if a statistical test
criterion or a one-to-one function of the criterion is structurally pro-
ducts and ratios of independent Gamma or Beta variates then the sth
moment of such a criterion can give the type of Gamma product ap-
pearing in (1.1) and hence its density can be written as a G-function.
Also if a test criterion is structurally products and ratios of rational
powers of independent Gamma and Beta variates the density of the
criterion can be written as a G-function after a little transformation
of the variable and simplification of the Gammas with the help of Gauss-
Legendre multiplication formula, namely,

(1.3) ['(mz)=(2r)"-mlpyms-1re ’;ﬁ I(z+j/m) .

These observations follow trivially from the definition of the G-function
itself. These are also pointed out in [5].

Consul [2] discussed at length the distributions of some multivariate
test criteria and wrote their densities in G-functions. As mentioned
earlier these follow trivially from the definition of a G-function. Also
formulae (4.7), (5.2), (6.6) and (7.1) of [7], (2.14) and (2.19) of [8], Theo-
rems 3.1 and 4.1 of [9] follow trivially from the definition of a G-func-
tion. From (1.1) it is evident that a G-function is only a contour in-
tegral representation and a statement to the effect that the density of
a particular test criterion is a G-function does not carry any meaning
beyond giving the moment expression for the test criterion. The prob-
lem of getting the distribution is not solved unless the G-function is
put into computable forms or in terms of elementary Special Functions.
Pillai, Al-Ani and Jouris [7] have stated on p. 2036 that a general G-
function can be written in terms of generalized hypergeometric func-
tions and they have given the formula ([7], p. 2036 (3.3)) for this pur-
pose. Their implication in ([7], (3.3)) is not correct because ([7], (3.3))
is given in ([8], p. 208) which in turn is the reduction formula when
the poles of the integrand are simple whereas the problems under con-
sideration in [7] all have poles of higher orders except in very particular
cases such as the case for p=2 given there. When p=2 the distributions
are trivially available from the distribution of a product of two inde-
pendent Beta variates. The statement regarding the reduction of a
G-function into hypergeometric functions is again repeated on p. 764
of [9].

The problems discussed in [7] are rediscussed in [8] for the complex
Gaussian case. In ([5], Chapter v) a general technique is suggested to
derive the distributions of the test criteria considered in [7]. In this
article we will discuss the exact distributions of the test criteria con-
sidered in [8] and [9]. Since there is no significant difference mathe-
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matically between the real and complex cases only an outline is given
here.

2. The exact distributions of a collection of test criteria

Pillai and Jouris [8] considered the problems of testing equality of
two covariance matrices, multivariate analysis of variance model and
the canonical correlation in the complex Gaussian case. Let X:(pXn,)
and Y : (pXn,) have complex Gaussian distributions N,(0, 3;) and N,(0,
Y,) respectively with n,,m,=p. Let,

(2.1) Wi={Ta-w), w=fil+f)

where 0<f,<---<f,<oo are the latent roots of (XX')(YY')! where

for example X' denotes the conjugate transpose of X. The hth mo-
ment of W, is given in [8] as,

2.2) E (Wh)= |A|"'1—P(-"-QQ(""’—+’Q Jm, n; nth L— A7)
Iy (ny)l(n+h)

where n=mn,+n,, ,If'l(-) is a hypergeometric function with matrix argu-
ment, 4 is a diagonal matrix with the diagonal elements as the latent
roots of X, 3;!, and for example,

(2.3) [ (a)=n>®-072 f[ Ta—i+1).

The ,F)(-) in (2.2) has the usual series representation as in the real
variable case with the Gammas replaced by I'(-) and the Zonal poly-

nomial Cg(-) replaced by Cx(-) where Cy(-) denotes a Zonal polynomial
of a hermitian matrix and K is the partition of the non-negative inte—
ger k into not more than p parts k,, k,,---, k, such that k,=k,=

k,=20, ky+k+---+k,=k. Evidently an mtegral representation of the

density function fi(w;) of W, is available by expanding Fi(- ) in (2.2)
and taking the inverse Mellin transform of (2.2). That is,

oo

2.4) Filw)=DmIAI™ $ <

p(nZ) k=0 K

G071
bl’. . b,,

[n]K[nl]K a -1 o=
k! CK(IP—' A )w1

where for example

@5) [al=1]@—i+Dy, (@=a(@+1)--@+r-1);
n=n,+n, a;=n+k, i1, +b;, b;=1—1, 1=1,2,---, p
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As remarked earlier, (2.4) is only an integral representation and the
distribution is obtained only if the G-function in (2.4) is put into trac-
table forms.

Now consider the multivariate analysis of variance problem. Let
X : (pXn)~N,(g, %) and Y : (pXn)~N,0, 2) be independent with n, n
=p. Let W, be as defined in (2.1) and let 2 be a diagonal matrix with
the diagonal elements as the latent roots of pgx/'¥~'. The hth moment
of W, and the density function fy(w,) of W; are given in [8] as follows.

26 fiwy=exp (~tr ) LT S 53 Intnlx G gup-s

I(n) *=° k!
el 3)

where a,,---,a, and b,,---,b, are as defined in (2.5). Now consider
the problem of canonical correlation. Let,

X: pxn]~N [0 (Z'u, Z’,,)]
[Y: gxnl TULTNEL, 3,
n=p+q and g=p. Let 0<7<...-<rl be the latent roots of (XY')-

(YY) (YX')(XX")™* and let P? be a diagonal matrix with diagonal
elements as the latent roots of 3;5,3;3%. Then the density of,

@.7) wi=11 1—r)

is available from (2.4) by replacing (n,, n,, 4) by (n,n—gq, (I,—P?)™)
and a;, by q+Fk,_,.,+b,. The G-functions appearing in the densities of
W., W, and W, are available from

=i—1, a;=m+k,_,.,+b
9. — ,,,0< ay, ,a,,) where b,=t—1, a; pis1H0;
(2.8) f(x)=Gpal2 S i=1,2 e p: M.

When m is replaced by n,, n, and ¢ we get the G-functions appearing
in the densities of W;, W, and W, respectively. The problem of de-
riving the distributions of W,, W, and W,, which is considered in [8],
is solved only if (2.8) is put into tractable forms. This can be achieved
by the following procedure. f(x) can also be written in the following
form.

c+1
c

2.9) f(@)=(2ni)! S " Msyads

where

(2.10) AE)={I'(&)(s+1)- - -I'(s+p—1)/[I'(s+m+k,)
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xI'(s+m-+k,_,+1): - -(s+m+k+p—1)1}
=TI, G+

where
j+1y j=0;11"'9p—21
(2'11) ﬁj= D, j=p—-1, Dy m+kp—1’

p_i ’ j=m+kp—¢+1+i—1,"', m+k,,_i+i—-1,
1:=]_, 2, .-, p_]_

and
(2.12) B={0,1,---, m+k+p—2}.

The contour in (2.9) is one of the choices of the contours available for
the G-function. In this problem (2.8) and (2.9) are the same and fur-
ther (2.9) exists and it can be evaluated as the sum of the residues at
the poles of the integrand in (2.9). Since these results are all known
in the theory of G-functions the details are omitted here. The simpli-
fication in (2.10) is achieved by cancelling all the common factors.
Now (2.9) can be evaluated either by partial fraction technique or by
the method of Calculus of residues. Evidently (2.9) is a finite sum
involving terms of the type x*i(—log x)*, 0=, <m—+k,+p—2, 0, <
p—1. The method of residues is explained in ([4], [56]) and hence the
results are given here without the details. That is,

x! 81 ﬁ o
(2.13) f(x)= (ﬁ,—l)‘ vzz ( i )( —log x)%
% {[vlz;-o (’U;l) Agv-l—vl) v:2=o (’01; >Agﬂ1—l—vz)' . -:lBj}
where
(2.14) Bj=ieTl;(—J' +%)7% and AP =(-1)"*7r! iE% [B/(—5+2) "],
i#] i#7

r=0.
For various values of p explicit expressions are available from (2.13).
For p=2. (2.13) reduces to the following form.
m+ky—1 m+ky
(2.15) f(x)=B,+ 2 B,[A;+(—1log x)]a:’+ + B,x?
PR~

where B; and A;=A{ are given in (2.14). Using a reduction formula for

m(m Z':’ g:) in terms of hypergeometric function, Pillai and Jouris [8]
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obtained a particular case for p=2. It should be remarked that their
formula ([8], (2.15)) is not true in general unless further conditions are
put on the parameters. Also there is a real danger in writing the
particular cases in terms of hypergeometric functions without stating
the nature of the series which is put into a hypergeometric function
because a hypergeometric function does not always have a simple power
series expansion which can be seen from ([3], p. 202(2), p. 63(18), (19),
p. 74(2), (3)). However their formula ([8], (2.16)) is valid which also
follows trivially from the distribution of a product of two independent
Beta variates.

3. The sphericity test

Consider the problem of testing the hypothesis, H,: ¥=¢’I,, where
¢*>0 is unknown and I, is an identity matrix, in a multivariate normal
case N(p,Y) against the alternative Y+#4'I,. The likelihood ratio cri-
terion is of the form,

3.1) W=|S8|/[(tr S)/p]

which is given in ([1], [9]). The exact distribution of W in the null
case is given by Mathai and Rathie [6] and in the non-null case the
hth moment of W is given in [9] as follows.

wy_ P ET? & v C(M)2*T(n/2+h, K)(np/2+k)
.2) EW)= I(n[2) papa kI (np/2+ ph+k)

in the real normal case where M=(I—2"")/2 and in the complex normal
case,

w_ P2 &« Cl M) (mp+E)[n+h, K)
(3-3) E W) f,,(n) Z“é I kE'I’'(np+k-+ph)

where M1=I,,—Z~’“ and for example,

(3.4) Iya, K)=24 1] Ma+k,—(i—1)/2)
and
(3.5) I'fa, K)=n>-v" T[ Ta+k,—it+1).

Also Pillai and Nagarsenker [9] have written the density of W in terms
of a G-function. Remarks about their Theorems 3.1 and 4.1 and their
particular case p=2 are already made in Sections 1 and 2 of this article.
If I'(np+ph+k) is rewritten with the help of Gauss-Legendre multipli-
cation formula (1.3) then the density g(w) of W in (3.3) can be written
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as follows.

_ qP DR F | Qn) D2 = éx( Ml) [(np+k)p"2-m—rkym-r
(3.6)  g(w)= ) paby -
p,0 Ayye ey Ay
XGp,p(’w b“. .. bp>

where a,=k/p+(j—1)/p+p—-1, b,=k;,—j+p, 7=1,2,---,p. Pillai and
Nagarsenker ([9], p. 764) assert to the effect that (3.6) can be written
in terms of hypergeometric functions. This assertion is not correct
which is already pointed out in Sections 1 and 2. The density of W is
obtained only if the G-function in (8.6) is put into tractable forms. In
this section the G-function in (3.6) will be put into a computable series.
Let,

(3.7) hw)=G33(w st ;‘)

with a,’s and b,’s as in (8.6) then h(w) can be written as,
(3.8) h(w) = (2ri)-! Si: H(s)ywds

where

(3.9) As)=I(s+k+p—1)I(s+ks+p—2)- - - I'(s+k,)/

[I'(s+k/p+p—1)(s+k/p+p—1+1/p)- - -
X I'(s+k/p+(p—1)/p+p—1)]

by using the same notations as in Section 2. Now (3.8) can be evalu-
ated by the method of residues. (8.9) can be simplified by cancelling
out all the common factors. Let,

(3.10) Ek=mp+r for some fixed m and r, m=0,1,---;
0=r=<p-—1.

Since ky=ky>---=k,20 and ki+---+k,=k, ki+p—1=m+p—1=k, so
that I'(s+m+p) can be cancelled with I'(s+k,). That is, 4(s) can be
simplified to the following form.

(3.11) A(s)=[jjr(s+k,+p—i)]/{[ il F(s+’m+p—1+(’r+'i—1)/p]

i#p—r+1

- [G+mtp—1)(s+m+p—2)-++s,)]
=I"”’"1(s+k.+p——1)/{;]1(s+i)"i[ T Ie+m+p—1

i=1
i#p—7+1

+r+i-1/p)|]
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where
a={ky, kp+1,---, ki +p—2}
and
1, 1=k, kpyt+1,-, kpy,
2, ikl kit 2, ket
t—1, =k, tt by tt+1l,ee, b, Httu,
3.12)  a=

t ’ i—'_—kp-t+t+u+1y' ) kp—(t+l)+t y
t_l ’ i=kp-t—1+t+19° %y kp-c—2+t+1 »
Y p—z ’ i=k2+p_2’ k2+p—1s"'r kl+p—2

where it is assumed that m+p—1=t+k, ,+u for some fixed ¢ and

0=<u<k,, ,—k, ). The poles of the integrand in (3.8) are available

by equating to zero the various factors of ;[T (s+7) where B;=a, for
€p

the jea and g;=p—1 for j=k,+p—1, k,;+p,--- and
ﬁ—_— {kjl, kp+1,' . ',k1+p—1’o-.} .

Now h(w) can be written by using the procedure discussed in Section 2.
That is, A(w) is the same as (2.13) with = replaced by w and with B,
and A; as given below. For j<k+p—1,

(3.13) B=r"(—j+k+p-D/{T (~j+ire fI N(—j+m+p-1

i%] i#p—T+1

+r+i-1/p) ;
(3.14) A=~ D¥(—j+ht+p—1)— T [a/(—j+9)]
i+

— 3 F(—jmtp—1+r+i-Dp);

i*pir+1
(3.15) AP, qzl,=(—1)«+*q!{(p—m(qﬂ, — j+k+p—1)
+3 [af(— i+ — 2 g+l —j+mtp—1
35‘9 i#:’ii‘+l
+r+i=D)p)] ;
and for j=k,+p—1,

(3.16) B,=1/{[(-1)(~=2) (=i +hetp— D
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T (—g+ir T T(—j+mtp-1+@+i-Dp) ;

(B.17) A;=(p—-1)TQ)—(@—D)[/(=D)+1/(=2)+ - - - +1/(—F+ I+ p—1)]
—S lal(—j+il— 3 F(—j+m+p—1+E+i=1/p);

t#p:r+l

(318) A, q21,=(—1)gH{(p—1lg+1, D+(p—DIL(— 1)
(=2 - 41 (— G+ p— 1))
+3 [al(—i+i M= 3 g+l —j+mtp—1

tEp—r+1

+r+i=D/p)} ;
where the Psi and the generalized Zeta function are defined as follows.
(3.19) ¥(@)=—7+(@—1) i‘a [(n+1)(n+2)]™
where 7 is the Euler’s constant: y=0.577--.
(3.20) Lz, v)—_—g (w+n)*,  v#0, —1,---, R(z)>1

where R(-) denotes the real part of (-). Particular cases can be easily
written down from (2.13) and (3.12) to (3.18) and the cumulative dis-
tribution function is available by term by term integration. The real
case, that is the density function corresponding to (8.2) can also be
worked out in a similar fashion. In this case two cases p-even and
p-odd are to be considered separately. Since the technique is the same
the discussion is omitted.
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