SOME PROPERTIES OF AN ESTIMATOR FOR THE VARIANCE OF
A NORMAL DISTRIBUTION

KATUOMI HIRANO

(Received May 25, 1973; revised Dec. 4, 1973)

1. Introduction and summary

Let X, X;,---, X, be a random sample from a normal distribution
and X be a sample mean. It is well known that

— 1 S At
(1) e B (K- X)
is the multiple of the sample variance with the minimum mean-squared
error (m.s.e.) in estimating variance of a normal distribution (for ex-
ample, see Kendall and Stuart [3]).
Let X,, X;,---, X, be a random sample from a population with mean
¢ and variance ¢% and let B,=p/s* be a coefficient of kurtosis where g,
is the fourth central moment. Under the situation that g, is known
as an a priori information, Singh et al. [5] proposed the estimator
Y*= n S (X— X )
n*—2n+3+By(n—1) 2 (&= X)

(given by (5)) with the minimum m.s.e. in estimating variances. Searls
[4] and the author [1] discussed the estimator for mean x using a known
value of the coefficient of variation as an a priori information. The
author [2] gave the estimation procedure unified [1], [4] and [5].

In this paper we discuss some properties of the estimator 7 for ¢
We show that 7? is more efficient than the sample unbiased variance in
the sense of the m.s.e. loss criterion for any distributions with the co-
efficient of kurtosis not less than 2. Further, we compare the estima-
tors for the variance in terms of another loss criterion. Finally, we
give the most efficient estimator in some class of the estimators in the
sense of this loss criterion.

2. Estimator #* and relative efficiency

Let X;, X;,---, X, be a random sample from a population with un-
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known mean p and unknown variance ¢*. Consider the estimator
(2) Y=w3 (X~ X)
=1

for the variance ¢, where X =)'_i‘_, X,/n and w is a positive constant and
i=1

depends possibly on the parameter. We determine the constant w to
minimize the mean-squared error (MSE) of Y. We have

(3) MSE (Y)=E (Y—o?)*

_ 1y M (8—n)d* o1 — N\
—wi(n 1)[n+n(n_1)]+ [1—wn—1)J .

Let w* be a constant that is chosen so that MSE (Y) has a minimum.
From (3), we have

_ n
(4) W= nE—2n+3+Bn—1)

If the population coefficient of kurtosis 8, is known as an a priori in-
formation, then we can use the estimator

_ n ‘e _ Xy
(5) ¥ T n'—2n+3+8(n—1) 2 &—X)
of the variance ¢°.

It is well known that the value w of (2) should be 1/(n+1) when
the normality of the population is assumed, because of 8,=3. Here we
are in position to compute the relative efficiency (REF) of »* given by
(1) relative to the sample variance

g=—L_3(x,—Xy
n—1 i=1

which is the usual estimator for the variance, in the sense of the re-
ciprocal of the ratio of the m.s.e.;

(6) REF (r%; 8) =1 00-0) ((:2 .

It is well known that s® is the unbiased estimator of the variance ¢* and

(7) MSE (s?)=Var (82)=—,'17<p4— Zj a‘> .

Under the assumption of the normality of the population, from (7) we
have
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4
(8) MSE (st)=—29"_
n—1

Similarly, from (8) we have

20*
9 R MSE (r¥) =
(9) (r)=-22"

Therefore, from (8) and (9) we have

(10) REF(r%s’):lH_—i 1  as n—oo.
n_

In Table 1, we give the value of (10) for different values n.

Table 1
n 5 8 10 13 15 18 20 oo oo
REF (72; s?) 1.500 | 1.286 | 1.222 | 1.167 | 1.143 | 1.118 | 1.105 ! 1
2((:__12)) in (19) | 1.500 | 1.714 | 1.777 | 1.833 | 1.857 | 1.882 | 1.894 ) 2

The above Table 1 shows that if the sample size n is small, the
estimator 7! is more efficient than s.. Hence the estimator 7% is effec-
tive in small sample cases, at most about 20.

3. Estimators of variance in normal distribution

It is well known that the sample variance s® is the unbiased esti-
mator of the variance. Even if the population is normally distributed
and the sample sizes are small, it may be usual to utilize the sample
variance s’ in estimating variance ¢*. Let X, X;,---, X, be a random
sample from the normal distribution N(g, ¢*). Under the assumption of
the normality we gave the estimator »* given by (1). Next, it is well
known that the maximum likelihood estimators for the mean g and the
variance ¢’ are given by

(11) X and t2=% g (X, —X),

respectively. Here, consider the three estimators 7%, s and # for the
variance ¢* in the normal distribution N(g, ¢%). We give the graphs of
the density functions of 7%, s® and #*. We will set ¢*=1 for simplifica-

tion. The statistic z=i (X;—X)® has a chi-square distribution with
i=1

n—1 degrees of freedom. If we make the changes of variables, we
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obtain the density functions of 7%, s’ and #}, respectively. We give here
the graphs of the density functions in Figs. 1, 2 and 3 for n=5, 9 and
25, respectively, because our interest is in small sample cases.

When we use the estimator »* for the variance o), from Table 1,
the largest gains are obtained for small sample sizes, at most about 20.
Such sample sizes may be all that are available. From the graphs we
may use the estimator »* or s* when we would like to estimate the
variance ¢°,

4. Extent of distributions for which ? is more efficient than s? in the
sense of m.s.e. criterion

What we have to discuss is the extent to which we are likely to
be justified if we apply this so called “normal distribution” in circum-
stances where the underlying distributions are not in fact normal. When
we apply the “normal kurtosis 8” in spite of a true coefficient of
kurtosis 3a (a>0) of some distribution, we would like to have the ex-
tent of the distributions for which the estimator 7 is more efficient
than the usual estimator s* for the variance ¢ in the sense of the m.s.e.
criterion.
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We assume that the true coefficient of kurtosis of some distribution
is equal to 3a (>0). Then we have
(12) t=3ac' .
From (7) and (12)

(13) MSE (st)=-1 <3a—”‘—3_>

n—1
We apply the normal distribution in circumstances where the underly-
ing distributions are not in fact normal, so that we use the estimator

r* for the variance ¢’. Hence, from (3), the m.s.e. of * is give by

(14)  MSE ()=w*{n— 1)2[”4+i3:(—"—);)-]+a4[1 wHn—1)F
where

(15) w*z%{ﬁ_'

Therefore, from (12), (14) and (15), we have

(16)  MSE ()= §”+32 [ +%]a‘+a‘|:l— :;i I

We would like to have the range of « that 7! is more efficient than
the usual estimator s®. Its range is equivalent to the solution that
satisfies the following inequality ;

an REF (r*; sz)—%%_l

The inequality (17), from (13) and (16), is equivalent to

o Ho gl eb-

Solving (18) with respect to «, we have

(19) a2 2(n=2) [ as n—oo,

n—1
for all n=2. In Table 1, we give the values of 2(n—2)/(n—1) for dif-
ferent values n. Since the range 3a=2 is the smallest set in the ranges
(19) for various =, it is enough to consider the distributions with the
smallest range 3a=2. Summarizing, we have the following result.

THEOREM. For any distributions with the coefficient of kurtosis not
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less than 2, the estimator r* of the variamce is more efficient than the
sample unbiased variance s® in the sense of the m.s.e. criterion.

We give the population coefficient of kurtosis of several distribu-

Table 2
Restrictions
Name Density and Domain on Kurtosis §;
Parameters
! eXp< (x_”)z) o< p< oo
* 2 o7 - 2 -
Normal* Mg, ¢2) Vora 20 0<o< oo 3
—oo<Lr< oo
JL 2 p [ 5 (log (‘/—#)2] —co<pu<oo | g4+29°+392—3
. *
Log-normal 2ro y 2 0<o<o | where g=e®
0<y<o
D
- 1 e y) —e<a<o
Uniform u a ) <z=Za+ 5 0<p<oo 1.8
Exponential* -%- exp [—-—] asr<o —00222100 9
Double- 1 [z al] —co<LaL oo
exponential* 28 exp [— B oLTLa 0<B< o 6
Gamma¥* ——1——.1:!'-*4,’-z 0<zx< oo 0<u<oo 3+£
() = ©
L) () o 3(c—2)
t-distribution* I(k(2) Vzk k 0<k<co k—4
—o0 << (k>4)
Weibull* X RLLp— [ W ] 0=w< 0<al oo N
eibu o WTtexp ” Sw<oo 0em< oo
R n 1-6p+6p®
Binomial* < > Z(1—p)y»= 1=0,1,---,2 0<p<1 3+————
inomia z p*(1—p) x P #p(l—p)
. urer 1
Poisson* 2=0,1,2,+++, 00 0<pu<oo 3+—
x! u
2
Geometric* p(l—p)* 2=0,1,2,--., 0<p<1 9+ lgp
Negative (;: B i)p"(l —p)y=* p*+6(1—p)
binomial* - 0<p<l |3+ 07

=k, k+1,:++, 0

The distributions with * have the value of the coefficient of kurtosis which is
always more than 2.
L If n<11, then the estimator 72 is more precise than sZ.

2) ﬁ2

_ T'(4}m+1)—4F@m+ )1 m+1)+6T(2/m+ 1)1 m+1)—304(1/m+1)
- [I'2/m+1)—I*(1/m+1)] ’

® It is the conclusion by the numerical calculations that the values of the co-
efficient of kurtosis of Weibull distribution are more than 2 for each m.
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tions at Table 2. We may see that most distributions have the popu-
lation coefficient of kurtosis not less than 2.

Note. From above discussions we can regard the population coeffici-
ent of kurtosis 8, as a measurement of departure from the normality.

5. Comparison of three estimators in terms of another loss criterion

In the previous sections, we have compared the three estimators for
the variance ¢* by the m.s.e. criterion. It was shown that #* in (1)
was more efficient than s® for any distributions with the coefficient of
kurtosis §8; not less than 2. But the m.s.e. criterion is not always the
best criterion. Especially, for the scale parameter it has a following
defect; The square loss is defined by

(20) L(Y)=(Y—-d"?,

where Y is given by (2). Then L,(Y) is the symmetric function with
respect to Y=¢* and hence

L,(0)=L,(24%) .
Therefore we have
MSE (Y) Iy=0=MSE (Y) Iy=2,3 .

(See Fig. 4). But in practical sense this relation is unnatural. We may

Loss

\ L,(Y)
\ L,(Y)

Fig. 4
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assert that MSE (Y)|y-, is far larger than MSE (Y)|p_;2.
In this section we compare the three estimators 7%, s* and ¢ in terms
of another loss criterion

1) Li(Y)=Max (%—1, %-1) :

This loss function is not the symmetric function with respect to Y=¢?;
for an arbitrary ¢>0, if Y=d¢'+¢ then Ly(Y)=¢/s* and if Y=d*—¢,
then Ly(Y)=¢/(6*—¢). We calculate the expected loss

22) I=E [L(Y)]=E [Max (%-1, ;—1)] .

It is well known that xf,_,=é (X;—X)*¢* has the chi-square distribu-
i=1

tion function F,_, with n—1 degrees of freedom under the normal popu-

lation and

(23) Y=ws'yi—, .

We have the following equivalent relations;

(24) Y%az<=>%;%1

E W=
ozt
w

Hence, from (22), (23) and (24), we have

L —1)dF, (6
w

n—1

_ 1w ..:_l._ 1 ( t >('n—-1)/2—1 gy
So wt 2T(n—1)2) \ 2 ¢

+ Sw wt 1 ( t )(n—l)lz-—l “lzdt 1
- - | = e —_
v 2I((n—1)/2) \ 2

_ 1 1/Cw) (e5>/2mz 2,w
T 2wl (n—1)/2) So #e et e D)

(25) I=S°° Max {wxi_l——l,
0

. S z(»-l)/ze-sdz_l .
1/CQw)

Finally, for each » and w=1/(n—1), 1/n and 1/(n+1) we give the values
of the incomplete gamma functions in (25) by the numerical calculations
and the values of I are presented in Table 3.

From Table 3, it is expected that
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Table 3
s2 2 r2 Y**
w 1 1 1
X P P ETSy wr
4 2.4502 3.2301 4.1228 1.9366
5 1.4060 1.7298 2.1328 1.2426
6 1.0403 1.2266 1.4719 0.9594
7 0.8485 0.9722 1.1420 0.7999
8 0.7282 0.8174 0.9438 0.6956
9 0.6447 0.7126 0.8113 0.6212
10 0.5828 0.6365 0.7163 0.5650
11 0.5347 0.5785 0.6446 0.5207
12 0.4961 0.5326 0.5885 0.4848
13 0.4642 0.4953 0.5433 0.4549
14 0.4375 0.4642 0.5060 0.4296
15 0.4146 0.4379 0.4747 0.4078
16 0.3947 0.4152 0.4480 0.3888
17 0.3773 0.3956 0.4249 0.3721
18 0.3618 0.3782 0.4047 0.3573
19 0.3480 0.3628 0.3869 0.3440
20 0.3356 0.3491 0.3710 0.3320
21 0.3244 0.3366 0.3568 0.3211
(26) E [L(r)]>E [Ly(t)]>E [Ly(s)] ,

for all =4, and we give the proof of this at Section 7. Hence the
estimator s* is more efficient than the others in the sense of loss
criterion L,. The estimator r* that is robust in the sense of the m.s.e.
criterion is not more efficient than s* in the sense of loss criterion L,.

6. The most efficient estimator in the sense of L,

We gave the well-defined loss criterion L, for the scale parameter
in the previous section. Further we compared the three estimators 72,
s* and ¢ for the variance in terms of the loss criterion L,, so that the
error of s’ is less than the others. But the estimator s? is not the most
efficient estimator in the sense of L, in the class of the estimators

{wf} X,—X )2} for the variance ¢*. In this section we study the most
i=1

efficient estimator in the sense of L, in the class of the estimators.

In order to obtain the most efficient estimator in the sense of L,
we would like to find a constant w that minimizes I=1I(w) given by
(25) with respect to w.

Putting
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@7 g=1 (@>0)
2w

in I=I(w) given by (25), we have

* 1
z(n-.’o)/Ze—:dz +

- _ 1
(28) I=I®=Fre "D \ T((n—=1)2)z

. S 27Dy —1

x

— X z (n—5)/2,—z, F((n+1)/2)
= Tn—D2) R o

— 1 o n—=1)/25=24~ __
T T(n—1)2)x Soz edz—1 .

It is easily seen that I=I(x) has a minimum and

dI(x) _ 1 T =525 ]y I'((n+1)/2)
29) de  T((n=1)2) So e L D27
‘ 1 z n—1)/2,~2
+———F((n—1)/2)x2 So 2Dl iy |

The equation

dI(x)

=0
dx

is equivalent to

(30) 2 S: z(u—S)/26—zdz+ Sx z(n—l)ﬂe-zdz_['(l"_-zl-_l> =0.
0

In order to find x satisfying this equation (80), we put the left hand
of (30) as f(x);

f(w)=m2 Sz Py PR S: z(n—l)/Ze-zdz_F< n'zi"l ) .

. 0
Then we can obtain the zero point x(n) of f(x) by the numerical cal-
culations. From (27) we can obtain the constant w**=1/2x(n) to min-

imize the expected loss I=I(w) given by (25) for each n. Therefore
we can obtain the most efficient estimator, in the sense of L,

(31) YRk = gk ; (X,— X

for the variance ¢°.. The values of w** and 1/(n—1) are presented in
Table 4.
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Finally, the expected loss of this estimator Y**, E [Ly(Y**)], are
presented in Table 3. From Table 3, we can see that the expected
loss of Y** are considerably smaller than the others for small sample
sizes.

Note. From Table 4, we may conclude that the most efficient
estimator Y** in the sense of L, is approximated by

1 n

(32) — (X, —X).
n—2 iz
Table 4
n w¥*  1/(n—1) n w**  1/(n—1) n w**  1/(n—-1)
4 0.55801 0.33333 34 0.03103 0.03030 64 0.01606 0.01587
5 0.34239 0.25000 35 0.03010 0.02941 65 0.01581 0.01563
6 0.25080 0.20000 36 0.02922 0.02857 66 0.01556 0.01538
7 0.19882 0.16667 37 0.02839 0.02778 67 0.01532 0.01515
8 0.16502 0.14286 38 0.02760 0.02703 68 0.01509 0.01493
9 0.14119 0.12500 39 0.02686 0.02632 69 0.01487 0.01471
10 0.12345 0.11111 40 0.02616 0.02564 70 0.01465 0.01449
11 0.10971 0.10000 41 0.02549 0.02500 71 0.01444 0.01429

12 0.09874 0.09091 42 0.02485 0.02439 72 0.01423 0.01408
13 0.08978 0.08333 43 0.02425 0.02381 73 0.01403 0.01389
14 0.08233 0.07692 44 0.02368 0.02326 74 0.01384 0.01370
15 0.07602 0.07143 45 0.02313 0.02273 75 0.01365 0.01351
16 0.07061 0.06667 46 0.02260 0.02222 76 0.01347 0.01333
17 0.06593 0.06250 47 0.02210 0.02174 77 0.01329 0.01316
18 0.06183 0.05882 48 0.02163 0.02128 78 0.01311 0.01299
19 0.05821 0.05556 49 0.02117 0.02083 79 0.01294 0.01282
20 0.05500 0.05263 50 0.02073 0.02041 80 0.01278 0.01266
21 0.05212 0.05000 51 0.02031 0.02000 81 0.01262 0.01250
22 0.04953 0.04762 52 0.01990 0.01961 0.01246 0.01235
23 0.04718 0.04545 53 0.01951 0.01923 0.01231 0.01220
24 0.04505 0.04348 54 0.01914 0.01887 0.01216 0.01205
25 0.04310 0.04167 55 0.01878 0.01852 0.01201 0.01190
26 0.04131 0.04000 56 0.01843 0.01818 0.01187 0.01176
27 0.03967 0.03846 57 0.01810 0.01786 0.01173 0.01163
28 0.03815 0.03704 58 0.01778 0.01754 0.01159 0.01149
29 0.03675 0.03571 59 0.01747 0.01724 89 0.01146 0.01136
30 0.03544 0.03448 60 0.01717 0.01695 90 0.01133 0.01124
31 0.03423 0.03333 61 0.01688 0.01667 91 0.01120 0.01111
32 0.03309 0.03226 62 0.01660 0.01639
33 0.03203 0.03125 63 0.01633 0.01613

EXIREREI
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7. Proof of the inequalities (26)

PRrOOF OF (26). In the previous section we showed that I=I(x) has
a minimum at only x=x(n) and dI(x)/dx given by (29) is the increas-
ing function with respect to x. Hence to show the inequalities (26)
it is sufficient to show

(32) L _<em),
n—1
because of 1/(n+1)<1l/n<1/(n—1) for each m=2. Since f(x) is the

increasing function and f(x(n))=0, to show (32) it is sufficient to show
the following inequality ;

(33) N < 1 ) —_ 1 Sl/("_l) 2 g2y 4 Sl/("—“ ZDlg=2d
n—1 (m—1)% Jo ‘ 0

-r{rt)<o.

Each term of the right hand of (33) is evaluated as follows;

1 1/(n—=1)
The first term of (33)<———-—-S PR P

(m—1)% Do
_ 2 ( 1 )(n+1)/2
T n—38\n—1 )

Th d term of (33)< 2 ( 1 >(n+”/2
e se R . .
con n+l1\n—1

Hence it is easily shown that f(1/(r—1))<0 for n=4. For n=5, from
the above evaluations, we have as follows;

The first term of (33)<1.
The second term of (33)<1.
The third term of (83)=I((n+1)/2)=6.

Therefore we have f(1/(n—1))<0 for all n=4. The proof of (26) is
complete.
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