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1. Introduction and summary

Let (X, A) be. a measurable space and let ® be an open subset of
the k-dimensional space R*. For each #¢6, let P, be a probability
measure on 4. Let {X,, n=0} be a discrete parameter Markov process
defined on (X, A, P,), X, taking values in the Borel real line (R, $).
Finally, let 4, be the o-field induced by the r.v.’s X, X;,.--, X, and
let P,, be the restriction of P, to the o-field _4,.

It has been shown in Johnson and Roussas [5] that for an arbitrary
0 € ©, the probability measure P,, may be approximated, in the L;-
norm sense and in the neighborhood of #, by an exponential probability
measure. One of the purposes of the present paper is to present a
simpler proof of the exponential approximation just mentioned; this is
done by exploiting some ideas taken from HAajek [3]. In the course of
the proof, we also establish a lemma of some independent interest. This
auxiliary result is discussed in Section 3 and the first main result of
this paper is presented in Section 4.

In the reference [3] cited above, Hajek considered a class of (weakly)
convergent sequences of properly normalized estimates of # and showed
that, under suitable regularity conditions, the limiting probability meas-
ures may be represented as the convolution of two probability measures
one of which is normal. He then employed this representation in order
to obtain, in a unified and elegant manner, certain results in asymptotic
efficiency of estimates discussed by Wolfowitz [12], Kaufman [6], Schmet-
terer [11] and Roussas [10]. The representation result mentioned above
has also been established by Inagaki in a nice paper [4] independently
and almost simultaneously with Hajek. In the present paper, it is shown
that the assumptions given in Section 2 are sufficient to allow us to
establish the Hajek-Inagaki representation theorem; the proof of the
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theorem itself is entirely different from the ones given by H&ijek and
Inagaki and is based on an idea due to Bickel [1]. Still another proof
of the theorem in question is obtained as a special case of some general
results which are discussed by LeCam [7]. The proof of the above
mentioned representation theorem is presented in Section 5.

2. Notation and assumptions

The notation and assumptions to be employed here are essentially
the same as the ones first used in Roussas [9] and also in Johnson and
Roussas [56]. For the sake of completeness, however, they will also be
explicitly mentioned below.

Let 6, {X,, n=0}, (¥, 4, P;,) and P,, be as in Section 1. It will
be assumed in the following that the probability measures {P,,, 8 € 6},
n=0, are mutually absolutely continuous. Therefore for any 4, 6* € 6,
we may set

[APy[dPol=a(Xy; 0, 6%),  [dPy /AP )=q(X:, Xi; 0, 6%) .
Furthermore, let
£, 0=[e(X,_1, X;; 0, 0%,  j=1,---,n,
o X | X3 0, 0%)=q(X,, Xi; 0, 0%)]a(Xy; 0, 0%)
and

901(01 0*)=[Q(XJIXJ—1; 0, 0*)]1/2 ’ .7:17 cee, M,
so that S 0, 0Py, =1.

ASSUMPTIONS. (Al) For each 4 € 6, the Markov process {X,, n=0}
is stationary and metrically transitive (ergodic). (See, e.g., Doob [2],
p. 457.)

(A2) The probability measures {P,,, 6 € 6}, n=0, are mutually ab-
solutely continuous.

(A3) (i) For each #¢€¢ 6, the random function ¢4, 6%) is differ-
entiable in quadratic mean (q.m.) with respect to 6* at (4, §) when P,
is employed.

Let ¢(#) be the derivative of ¢(0, 6%) with respect to #* at (4, 6).
Then

(ii) ¢(8) is ;X C-measurable, where C denotes the g-field of Borel
subsets of 6.

Let I'(9) be the covariance function defined by I'(6)=4&,[¢:(6)¢/(6)].
Then

(iii) I'(#) is positive definite for every 6 € 6.
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(A4) For every #€6, the random function fi(6, 6*¥) is continuous
in P, ,-probability at (4, 6).

It should be pointed out here that in the case that the r.v.’s in-
volved are i.i.d., Assumption (Al) is automatically satisfied and Assump-
tion (A4) follows from Assumption (A3)(i). Thus in this case, the
assumptions made become as follows.

(A1) For each 6 €6, the distribution of X; under P,, is absolutely
continuous with respect to some o-finite measure ¢ on B, and if q(-; 0)
is a specified version of the Radon-Nikodym derivative involved, then
q(-; 0) is positive on a set independent of 6.

Set ¢i(0, 6*)=[q(X;; 6*)/q(X,; 6)]"*. Then

(A2) (i) For each §¢6, the random function ¢4, 6%) is differ-
entiable in q.m. with respect to #* at (4, ) when P, is employed.

Let ¢,(0) be as above. Then

(ii) ¢@8) is X, Y(P) X C-measurable, where C is as above.

(ili) For every 6¢€86, I'(0)=4E[¢(0)¢i(0)] is positive definite.

In all that follows, all limits will be taken as {n}, or subsequences
thereof, converges to infinity unless otherwise explicitly stated, and in-
tegrals without limits will be taken over the entire (appropriate) space.

3. Some auxiliary lemmas

In this section, we establish a lemma and a corollary to be used
in the proof of the main results in Sections 4 and 5 of this paper. To
this end, consider the r.v.’s U,, n=1, 2,--. defined on the probability
space (2, <, P) and recall that the r.v.’s |U,|, n=1, 2,--- are said to

be wuniformly integrable if S |U,|dP—0 uniformly in n as a— oo
a)

qui>

(see, e.g., Loéve [8], p. 162).

LeEmMA 3.1. For n=1,2,-.-, let U, be r.v.’s defined on the prob-
ability space (2, F, P) and let U be a r.v. defined on the probability space
(2,9, P'). Suppose that E(U,||P)=C|U,| =€ |U|=E(U||P") finite
and L(U,|P)=>L(U|P'). Then the r.v.’s |U,|, n=1, are uniformly
integrable.

This lemma is only a slightly different formulation of a theorem in
Loéve (see A (iii), p. 183) and is taken from that with g(x)=2, x ¢ R.

The following lemma relates uniform integrability of the r.v.’s
|U,—V,|, =1, to that of the r.v.’s |U,|, |V.|, »=1. More precisely,
one has

LEMMA 3.2. For nz1, let U,, V, be r.v.’s defined on the probability
space (2, F, P) and suppose that the r.v.’s |U,|, n=1, and |V,|, n=1,
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are uwiformly integrable and that U,—V,—0 in P-probability. Then
the rv.’s |U,—V,|, n=1, are uniformly integrable.

Proor. Clearly,

CRV |U,—V.laP=| |UlaP+| |V.|dP
(Un=Valza) UUp-Vnlzad UUp=Vanl2a)

and

3.2) S |Un‘|dP=S |U.|dP
UUn=Valzad Ua=ValzadnUal2ed

|UnldP

S(lvn—anza)n(IUan)

< |U.|dP+cP(U,~V,|=a) .

S(IUMZB)
By the uniform integrability of the r.v.’s |U,|, »=1, one has that

S(I | )IU,.IdP<7i- for all sufficiently large ¢, whereas for each such a
Unl2c

¢ and all sufficiently large a, one also has that P([U,,—V,.Iga)<4i for
C

all n=mn,, say. Therefore for a ¢ and an a as just described, relation

(3.2) becomes as follows

(3.3) |U,,|dP<—% ,  m=m, .

S(lUn—anza)

In a similar manner, one obtains the inequality

(3.4) |V,.|dP<—;— ,  m=m,, say.

S(]Un—VnIZa)
Increasing @ so that (3.3) and (3.4) hold true for n=1,2,--., n;=max
(ny, ms), we obtain the desired result by means of (3.1).

COROLLARY 3.1. Under the assumptions of Lemma 3.2, one has
that £€|U,—V,|—0.

Proor. It is an immediate consequence of the assumption U,—V,
—0 in P-probability, the uniform integrability of the r.v.’s |U,—V,|,
n=1, as concluded in the lemma, and the L,-convergence theorem (see,
e.g., Loéve [8], p. 163).

4. Exponential approximation

The purpose of the present section is to show that the probability
measure P,, may be approximated in the L,-norm sense and in the
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neighborhood of # by an exponential probability measure. In carrying
out this approximation, we are going to use some of the results ob-
tained in Johnson and Roussas [56]. To start with, let ¢ be an arbitrarily
chosen by fixed point of @ and consider the k-dimensional random vector
4,(0) defined by

(4.1) 2,=4,(0)=21"" 33 6,(0) .

In the reference last cited, # was taken to be the origin in 6. Since
the results obtained there do not hinge on this choice of #, we will not
insist on it here. Next, let 4*=4%(#) be the truncated version of 4,
defined by (4.6) in Johnson and Roussas [4] and consider the (exponen-
tial with parameter % € R*) probability measure R,, defined by (5.1)
and (5.2) in the reference just cited, namely,

(4.2) R, ,(A)=exp [—B,(h)] SA exp (h'4¥)dP,, , Aed,,
where

4.3) exp B,(h)=E&, exp W 4F .

Let {h,} be a bounded sequence of points in R* and set 4,=6+h,n""2
Then the main result of this section is the following

THEOREM 4.1. In terms of the notation introduced so far, ome has
4.4) H R no—Pron||=2sup [| By p,(A)— Ppo,(A)]|; A€ A]—0 .

PrOOF. The proof is by contradiction. Assume that (4.4) is not
true. Then there exists a subsequence {m} < {n} and {k,}C {h,} with
h,—h such that

(4.5) [| Pr,om=—Prman || 70 .

From Theorem 3.1.1 in Roussas [9], one, clearly, has that
(4.6) [P, on/dPp )= Ln(h,)=exp [khd,— A(hn)+ Zo(hn)] ,
where

@7 A =%h{nl’(0)h,,, and  Z,(h,)—0 in P, ,-probability .

From (4.2), one has
(4.8) (@R 1n/@Pp,e)=Li(hn)=exp [— Bu(hn) +R54%] .
Then from (4.6) and (4.8), it follows that
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(4.9) | Ln(hm) — Li(h) | S| B (4 — 43%) |+ | Zn(Pem) |
+|Bu(hn)— A(hn) |1 €xp T

where T, is a r.v. lying between the r.v.’s hl4,—A(h,)+Z,(h,) and
—B,(h,)+h,,4%. The second term on the right-hand side in (4.9) con-
verges to 0 in P, ,~-probability by (4.7), whereas the first term on the
same side does likewise by means of Proposition 4.1 in Johnson and
Roussas [5]. Finally, by (5.17) in the last reference, one has that exp
B, (h,)—exp A(h,)—0. (For a proof of this fact somewhat simpler than
the one referred to, see Lemma 4.1 below.) By virtue of (4.7), A(k,)
— A(h), so that B,(h,)—A(h,)—0. Therefore (4.9) implies that

(4.10) L,(h,)—L,(h})—0 in P, ,-probability .
Next by Theorem 3.2.1 in Roussas [9],
4.11) _L{L.(hy)|Pns= L(exp 4*|Q*) and Eoeexp 4*=1,

where 4* is the identity mapping on R and Q*=N(—1/2)k'T'k, h'T'R),
I'=r(@). Similar results hold also true for L}(%,), as follows from (4.8)
and the fact that 4,—4%—0 in P, ,probability and exp B,(h.)—exp
A(h). Therefore Lemma 3.1 applies with {n} replaced by {m}, (2, &,
P)=(¥, A, P), (2,9, P)=(R, B,Q% and U,=L,(h,)(Li(h,), U=
exp 4* and gives that the r.v.’s |L,(h,)|=L.(h.) (| L% (h,)|=L%(h,)) cor-
responding to the sequence {m} are uniformly integrable. This result,

together with (4.10) and Corollary 3.1, gives that S | Ln(hm) — L¥(Ry) | QP s

—0 which amounts to a contradiction to (4.5). The proof of the theo-
rem is completed.

COROLLARY 4.1. Let B be any bounded set in R*. Then one has
that

sup (|| Pno,—Rnnrll; h € B, 6,=0+hn"'*)—0 .
Proor. It follows by a contradiction argument.
This section is closed with the following lemma referred to above.

LEMMA 4.1 With the quantities B,(h) and A(h) defined by (4.3) and
(4.7), respectively, one has

(4.12) exp B,.(h,)—exp A(h,)—0 ,
where {m} < {n} and h,—h € R*.

ProoF. Let 4 be the identity mapping on R* and let Q=N(0, I'),
where we recall that I" stands for 7I'(#). Then Sexp h'4dQ is the mo-
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ment generating function of h'4 evaluated at t=1. Since this is equal

to exp A(h) and A(h,)— A(R), in order to prove (4.12) it suffices to show
that

(4.13) exp B,(h,)— S exp h’'4dQ <= S exp h’de) .
For simplicity, set L,=_L(4}|P,,). Then _,=Q by means of Theo-
rem 3.2.1 in Roussas [8] and the fact that 4,—4%—0 in P, ,-probability.

Next, let S, be the (closed) sphere centered at the origin and having
radius r, and let M, be a constant such that

(4.14) |exp hl,z—exp h'z| <M, || h,—FR]| , z€eS, .

The fact that Q(3S,)=0, the convergence .,=@Q and an easy elabora-

tion on the definition of weak convergence of probability measures,

imply that

(4.15) Ss, exp h'zd L, —> Ss, exp h'zdQ .

Therefore

‘ Ss, exp hlzd L, — Ss, exp h'zdQ |

< Ss, |exp hlz—exp h'z|dL, + l sz exp h'zd L, — Ssr exp h'del
M| hu—h|+ i Ssr exp h'zd L, — Ss, exp h’de}

and this converges to 0 by means of (4.14) and (4.15). Thus

(4.16) Ss, exp hl2d L, — SST exp h'zd@ .
Let 2, be such that

(4.17) hallS2, RS 4 .
Then

(4.18) ‘ Ssi exp Wzd L, — Ssi exp h’de’

<, expImizldLa+| expinzido
<, expalizlldLa+] exp alizlidq .

Since Sexp A]|z]|dQ@ <o by Lemma 4.1 in Johnson and Roussas [5], we
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may choose r sufficiently large, so that
(4.19) SSC exp &||2]|dQ<c .

In a manner similar to the one used in order to establish (4.15), one
shows that

(4.20) S expzouzud.fm—»gs exp &||2/|dQ .

Recalling that .[,=_(4}|P,,), relation (4.20) herein, along with rela-
tions (4.1), (4.5) (with 2 replaced by 2,) and (4.6) in Johnson and Roussas
[56], implies that

Sg exp 2°||z||d.£’m——>SS£ exp &||2]|dQ .
Hence for all sufficiently large m, one has
(4.21) SS: exp Aol|z[|dLr <2 .
By (4.19) and (4.21), relation (4.18) gives
Ssi exp hhzd L,,— Ss: exph'zdQ .
This result, together with (4.16), implies that

(4.22) S exp Mzd L, — S exp W'2dQ .

Finally, exp Bm(hm)=S exp h:nA;:dP,,,,,zgexp h;,zdIm—»S exp h'2dQ by
(4.22). Then (4.13) completes the proof of the lemma.

5. A representation theorem of Hdjek-Inagaki
Define the class C of sequences of estimates of 4, {T,}, as follows
(5.1) C={{T.}; LIn"(T,—8,)| P,..]= L(6)},

a probability measure, where _£(6), in general, depends on {T,} and @,
=0+hn"'?, so that 6, ¢ ® for all sufficiently large n. The main result
of the present section is that the probability measure _(f) can be re-
presented as the convolution of two probability measures one of which
is normal. More precisely, one has the following

THEOREM 5.1. Consider the class C defined by (5.1). Then one has
that L(8)=_.L(0) * L), where L(0)=N(, I'"(8)) and _L6) is defined
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by (5.15) below.

ProoF. 1In all that follows # is kept fixed. Therefore for the sake
of simplicity, we may omit # from our notation. Thus, for example,
we shall write ., L, [y, I', 4Ff etc. rather than _L(6), L(6), Ly6),
I'(8), 4X0) ete.

Set Lrx=_L¥0)=_L[(n"(T,—86), 4¥)|P,,]. Then, by the Weak com-
pactness theorem for probability measures, there exists {m} < {n} such
that %= _[* a measure. Then the marginal measures L[m'*T,—0)|
P,,] and _L(4%| P, ,) of L[(mV(T,—8), 4%)| P, ,] converge (weakly) to the
corresponding marginal measures of _*. These latter marginal meas-
ures are then probability measures sinece both _L[m'*T,—6)|P,, and
L(4%| P, ,) converge to probability measures. It follows that _[* itself
is a probability measure. Setting (T, 4) for the identity mapping on
R*x R*, we have then that _[L[(T, 4)| L*]=_L%*, so that

(5.2)‘ LI(mY(T,—8), 4%)| P,...]= LUT, 4)| L*] .
It is shown in Lemma 5.1 below that
(5.3) &y exp [t m(T,,—6)+ A4,,]
—&, exp [iu’m‘”( T, —60)+h' 4% —%h’rh]—»()
and

(5.4) . &, exp [iu’m"z( T, —0)+h 4% ——é—h’l“h]—»
N ’ 1 ’
& px €xp <zu T+h A—Eh I’h) .

Therefore by setting

(5.5) &(u, h)=& pxexp (iu' T +1h'4)

and replacing h by zero, we obtain by means of (5.4) that

(5.6) & exp[ium(T,—0)]—>&E rxexpiu'T=E pexpiu'T=¢(u,0) .
Also from (5.1) and (5.5), it follows that

5.7 & exp [t/ m"(T,,—6,,)1— d(u, 0) .

Next,

&y, exp [tu'mV(T,,—80,,)]=E, exp [tuw'mV(T,,—6,)+ 1,]
=&, exp [tu/'mV(T,,—60)—iuw'h+4,]
=exp (—wu'h)E, exp [tu'm" (T, —6)+ 4,]
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and this last expression converges to exp(—iu'h)E rxexp (tu'T+h'd—
(1/2)k'T'h) by means of (5.3) and (5.4). That is,

(5.8) &s,, €xp [tu'm" (T, —0,)]—
exp (iw'h)E _rx exp (iu’T-i— W4 -% h’Fh> .
From (5.7) and (5.8), we obtain

(5.9) (u, 0)=exp (—iwh)E 1+ exp (iu'T+h'A—% h'rh) .

It is shown in Lemma 5.2 below that in (5.9) we may replace h by k.
By doing so, we obtain

(5.10) é(u, 0)=exp whE r+ exp (iu’T+ih’A+%h’Fh> :
By means of (5.5), relation (5.10) may also be written as follows
(u, 0)=(exp wh)p(u, h) exp _;_h'rh ,
so that
(5.11) $(u, b)=g(u, 0) exp (—w'k) exp (—-é-h’l’h) .
Next, it is easily seen that
—wh— LW Th= — LW+ wrHrh+ ) +iwr,
so that (5.11) becomes
(6.12)  ¢(u, h)=exp [—-;—(h’+u’I‘")I’(h+F“u)}¢(u, 0) exp %u’l"“u .

Setting successively h=0 and h=—I""'u in (5.12), we obtain

(5.13) (u, 0)=exp (——é—u’l’“u) (u, 0) exp —%—u’l"“u
and

(5.14) $(u, — ") =g(w, 0) exp —;—u’l""u ,
respectively.

From (5.5) and (5.14), it follows that ¢(u, 0) exp 1/2-u'I"'u is a char-
acteristic function (under .L£*), namely, the characteristic function of
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the random vector T'—I""'4. Define _[; by
(5.15) Ly =L(T—-I"4|\.L*%).

Also exp (—(1/2)u'I'"'u) is a characteristic function (under _£*), namely,
the characteristic function of the random vector I"-!'4 which is distributed
as N, I''"). Set L;=N(,I'""). Then from relation (5.13) and the
Composition theorem (see, e.g., Loéve [8], p. 193), it follows that L=
Lyx_L,, as was to be seen.

We now proceed to establish the lemmas used in the proof of the
theorem.

LEMMA 5.1 With the notation employed in the theorem, one has that
(i) &,exp[iu/m"(T,—0)+1,]
—&,exp [iu’m"z( T, —0)+h' 4% —%h’l‘h]—»O

and

1

(i) &, exp [iu’m"z( T, —8)+h 4% —ih'l"h]q

& v exp <iu’T+h'A —%h’l*h) .

ProoF. (i) For simplicity, set U,=exp 4,, V,=exp (h'4¥—(1/2)h'Th)
and Q*=N(—@1/2)h'Th, K'Th). Then the convergence _L(A4,|P, )= _L(d4|
Q*), implies that _L(U,| P, )= L(exp 4|Q*), whereas & U,=& ¢ exp 4=1.
Also the convergence _L(4¥| P, ,)= N(0, I') implies that _L(h'4*—(1/2)h'T'h|
P, )= _L(4|Q%), so that L(V,|P,, = L(exp 4|Q¥). Furthermore, &, exp
Wa¥—Eqexp h'd=exp (1/2)k'Th by (4.3) and (4.13), where, we recall
. that, Q=N(0, I'). Thus &,V,—1, so that Lemma 3.1 applies and gives
that U,, V,, n=1, are uniformly integrable. Next, U,—V,—0 in P, ,
probability by arguing as in (4.9) and using the fact that 4,—h'4¥—
—(1/2)n'Th in P, ,probability. Then, by Lemma 3.2, it follows that
|U,—V,|, n=1, are uniformly integrable, and Corollary 3.1 gives that
&|U,—V,|—0. The proof of (i) is then completed by observing that
the left-hand side of (i) is bounded in absolute value by &,|U,—V,|.

(ii) Clearly, it suffices to show that

(5.16) Eolexp iw'mY( Tp—6)+1' %] — & rx exp (iw' T+h'd) .

Set A,=(|h'4%|>c). Then one has that

(5.17) |Elexp u'mV(T,—0)+h'4%]—E rxexp (' T+h'4)|
< SM exp W A% P, .+ SAM exp I/ AdL*
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+ ' SAC exp [iw'm (T, —6)+1' 4X1dP,,,
—S exp (i T+1 AdL*| .
AL

As was seen in the proof of (i), &,exph’d*—exp(1/2)h'T'h. Also
L(WAE| P, )= _L(W4|Q) implies that _L(exph'd}|P,)=>_L(exph'd|Q).
Therefore Lemma 3.1 gives that exp h’4¥, for all m, are uniformly in-
tegrable. Thus one may choose ¢ sufficiently large, so that

(5.18) SA exp W'4¥dP, ,<e¢ and S exp h'4d_L*= S exp h'4dQ<e .
m Am Am
Furthermore,

(5.19) S exp [iu'm( Ty —8)+h' 4%1dP,.,
s

exp (iu' T+H A)d_L%— S exp (iu' T+ ' 4)dL*

S(lh’dlSc) Urd|sed

by the fact that L= _L* and L*(R*X B)=@Q(B)=0, where B={4 ¢ R*;
|W'4|=c}. The relations (5.17)~(5.19) complete the proof of (5.16) and
hence that of (ii).

LEMMA 5.2. With the motation employed im the theorem, consider
the expectation & pxexp (tw'T+h'4) as a function of h, call it g(k), where
h=(y,--- b)), hyeR, j=1,---, k. Then, for j=1,---,k, g(h) is ana-
lytic in the jth coordinate h; when the first j—1 coordinates h,, r=
1,---,7—1 are any complex nmumbers and the last  k—j coordinates
h,, r=73+1,---, k are any real numbers.

ProoF. By setting h=(hs,---, k), 4=(4,,---, 4,) and d=(d,,---,
4,), one has that

& rxexp (W' T+h )= E p«exp [(tuw' T+ 4)+ h,dy]
=& r# [exp (tuw'T+R'4) 5:,; (h;#]
Jj= H
oo . Aj
=¥ [exp (zu’T+LL’4)7"—]h{ .
j= .
Now at this point we observe that for =0, one has

(5.20)

é [exp (w'T +b’4)£] ki |
j=0 J!

n 7 n i
=exph’4| Zihfléepr’éz 14,] [y
i=0 gl = gl

<exp (R'4+|m4))
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and this last expression is, clearly, @-integrable and hence _[*-integrable.
Then by the Dominated convergence theorem, we get

€ v exp (W T+ )= ,§§, {8 . [exp (iw' T+1h'd) _"H } hi
= J!

which shows that g(h)=g(h,,---, k) is analytic in h, when the other
coordinates are kept fixed. Thus, %, may be replaced by a complex
variable. Making this replacement and working as above, we have that
the left-hand side in (5.20) is jﬁ_‘a.[exp (i T+ ihd+ hudy+ B 4) ‘J’: ] i,
where hy=hy,+ihy, b=, -+, b)Y and 4=(d4;,---, 4,)', whereas the last
bound on the right-hand side of the same relationship is equal to exp
(hyd,+k 44| h.4,]) which is Q-integrable and hence _L*-integrable. There-
fore h, may be replaced by a complex variable. In a similar fashion
each one of the remaining coordinates may be replaced by complex vari-
ables and this completes the proof of the lemma.
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