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Summary

Let {X,}, n=1,2,---, be a sequence of independent random vari-
ables distributed according to a distribution function F(x) with finite
variance, F,(r) be the empiric distribution funection of X,,.-., X, for
each n, and ¢%, and ¢* be optimum stratifications corresponding to F,(x)
and F'(x) respectively. ‘

It is shown in this paper that ¢%, tends almost surely to ¢* under
a suitable criterion.

1. Introduction

Let X be an unvariate stratification variable with a marginal dis-
tribution function F(x), and Y be an unvariate objective variable with
finite mean g, and variance o}, and n(x) be the regression function of
Y on X. ,

Let us suppose that stratification operation should be made only
using the stratification variable X for estimating the mean p of Y, and
that the number ! of strata, the total sample size m and the sample
allocation {m,, 1<¢<l} are preassigned.

Such a stratification may be expressed by a decomposition {F;, 1=
1<l} of the marginal distribution function F'(x) of X, i.e.

S\ F(z)=F(x) for all o,
i=1

where F(x) is non-negative and non-decreasing in z.

Since each measure F), corresponding to the function Fiy(x) is ab-
solutely continuous with respect to the measure F corresponding to
F(x), there exists a vector-valued measurable function ¢(x)=(¢(zx),---,
¢,(x)) for each decomposition {F};} of F such that

§¢i(”)=1 a.e. (F), ¢(x)=20 (1=i<)),
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and the correspondence between {F}} and ¢ may be regarded as one to
one (see the section 3 in [1]).
In case of proportionate allocation (m,=w,m) the variance of an

— l —
unbiased estimator Y=‘§} w,Y; of y,, based on the random sample under
=1

a stratification ¢, may be expressed as
) VE9=ilat-n+5 | me-wr@iFe)}

where w,=F,(4o0) is the weight of the ith stratum, o} is the total
variance of Y, p, is the mean of Y in the ith stratum and p is the
correlation ratio of Y on X (see the section 4 in [1]).

It is easily seen from (1.1) that V(Y|¢) takes the minimum value
at ¢=¢* if and only if ¢* attains the infinum of the second term in
the bracket of the right-hand side of (1.1) which is rewritten as

12 3|7 mo-mrs@iF@="_r@diFe- 5w,

Further if the regression function is linear, i.e. 7(x)=pg,+p%, then (1.2)
reduces to

w3 2|7 o-wrseire=gl"_siF-3 v},

i=1

where [1,=L Sw zd(x)dF(x) is the mean of X in the ¢th stratum.
w; —o°

Therefore the optimum stratification ¢* attains the infimum of the
function

(1.4) G (@), u(g)) = — > 1L
i=1 w((¢)

where w¢(¢)=81 #(@)dF(z) and u{(¢)=S: 26(z)dF(x). (see example i

in [1], p. 123).

This fact shows that ¢* is identical to an optimum stratification for
the marginal distribution function F(x) of the stratification variable X
in the case of proportionate allocation and linear regression.

If F(z) is unknown but a simple random sample of size n (X,,:--,
X,) is given under the above situation in advance of stratification oper-
ation, it is necessary to make an estimate ¢%, of ¢* using the given
sample (Xi,---, X,) and investigate its probabilistic behavior.

One way of doing this is to obtain ¢%, as an optimum stratification
for the empiric distribution function F,(x) of (Xi,-:-, X,), and to exam-
ine whether Gy(w(g%,), u(¢E,)) converges almost surely to G (w(¢*), u(4*))
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or not as n—oo. :
It is noted here that there exists an optimum ¢* for any F'(x)
(discrete or continuous) such that

1 if of . <z<aF (IZiZ)
:‘(w)={

0 otherwise ,

‘where ! =Sl X@)dF (), y;'==S°_°m s @)AF (@), (1Si<l) mF<pr<---<

p¥, x¥=(uF+p%.)/2 with no probability mass on it (1<i<1), f=—o0
and x¥=+4 oo, if the support of F(x) contains at least [ points (see also
[1D.

'w¢0‘¢

In case of Neyman allocation <ni =
213 W04

n) there exists an opti-

mum stratification ¢** for F(x) which minimizes the function

1.5) G(w(9), u(9), v(¢))=§..: [w(p)vdp)—uil($)I'"* ,

where w(@)=|" p@dF@), u@)=" z4@dF@) and vg)=|"_z'¢@)-
dF(x) (see [2]).

It is also of interest to investigate the probabilistic behavior of an
optimum stratification ¢k} for F,(x), i.e. to examine whether G, (w(¢%3),

u(gE¥), v(pLy¥)) converges almost surely to Gyw(¢**), u(¢**), v(¢**)) or
not as n— oo.

2. Preparatory lemmas

In this section we state two lemmas useful for deriving main the-
orems in the following sections.

LEMMA 1. Let F(x) be a distribution function having finite mean
¢ and variance o and F,(x) be the empiric distribution function of ran-
dom variables distributed independently according to F(x). If g(x) is a
continuous and integrable function with respect to F', then

@2.1) P{ lim sup SI o(@)dF,— S, g(x)dFl =0} =1

n-ooo red
holds, where I 1is the family of all intervals on the real line.

Proor. Since g is integrable with respect to F, for any positive ¢
there exists a positive constant K. such that
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|, ld@IdF@)<e

holds.
By the strong law of large numbers there exists a positive integer
n,(s) depending only on ¢ such that

(2.2 Joe [I@IAE@ <[ lo@)|dF@)+e<2e

x>

holds with probability one for all n>mn,(e).
 Let us divide the interval [— K., K.] into v, intervals {I,} with equal
length such that

|g(x)—g(a:)]<e for Ix_x’|<5e; xz and 2’ € [_Ker Ke]

=241, p=(-K4-n2Ee, g1 2Ee] iz,

Oc « Ve

Ilz[_Ker "'Ke+ 2Ke] .

Ve

Let us take any fixed point z; in each I, (1<j<v.). Then the fol-
lowing relations hold :

(23) ocr o, SOEF@ =3 g@)FANL)| <e
(2.4 s o, JOEF@ — 3 g@)FAINL)| <,

and then for any >0

(2.5)

g@)F.@)- |
)

IN(-K, K

<2e+M5f_V:}1 |F(INI)—FINL)|<2+M.u.p

9@)dF @)

Sm(—xg.x‘

uniformly in I with probability one for all n>ny(5) by the theorem of
Glivenko-Cantelli where Mezlslup |g(x)|. If we take 5 for 7. such that
z|sK

M.y <e, then from (2.5) '

(2.6)

0@HF@-| g@dFE)|<se

Szn[-x.,x‘] IN[-K,,K,

holds uniformly in I with probability one for all n>mn.(.).
Therefore from (2.2) and (2.6) we can find a positive integer n,(¢)=
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max (n,(e), ny(n)) such that the inequality

@.7) |, 8P @) s@)ar)]| <ee

holds uniformly in I with probability 1 for all m>m). This result
shows that (2.1) holds. Thus the proof is completed.

COROLLARY. If F(x) has the finite rth moment, then the relation

(2.8) P{ lim sup

n—co Ied
holds for 0ZEkZr.

Remark. In the case k=0 (2.8) is identical to the theorem of
Glivenko-Cantelli.

S, oA F () — SI x"dF(x)‘ =0} =1

LEMMA 2. Under the same assumptions in Lemma 1 and the as-
sumption that 0<T=S [9(@)]'dF(2) < oo,

2.9) P{lim sup [S’ g(x)dF,.(ac)] [S’ g(z)aF(a;)] =0r=1

nooo T SIdF,.(a:) SIdF(x)

2 2

holds, where both terms in the bracket in the left-hand side of (2.9) should
be taken to be zero if

SI dF,(x)=0 or Sz dF(x)=0 respectively .

PROOF. Let 9 be the family of all intervals on the real line, and
let us divide it into two sets . and I, for any positive ¢ such that

9;:{1; SIdF(x)<-§-} and 1=, .

Then it is easily seen by the Schwarz’s inequality

2.10) Mgg ¢ngJS gdF «/S iF <<
|,aF oo 8

I

holds for any Ie€<9.. In the same way

(2.11) Még gdF,
S aF,

I
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holds for any possible F,. By Lemma 1 there exists a positive integer
n,(¢) such that

2.12) S gzdF,.<S FdF+ <2,
I I 3 38

holds with probability 1 for any I€ T, for n>n(e).
Therefore from (2.10) and (2.12)

(2.13) sup [S’ngnT— [S’ng]z <e

Ied, S dF, S dF
I

I

holds with probability 1 for any I'e T, for n>n,(e).
On the other hand the inequality

[, Pz
I 9z
holds for any I'e .. Let us put
”‘":S ng"“S gdF  and 772,,=S dF,.—S dF .
I I I I

For any 6>0 there exists a positive integer 7,(8) by Lemma 1 such that
I’?lnl<5 and lﬂzn|<5

hold with probability 1 uniformly in Ie JZ for all n>ny(s).
Therefore it is easily seen that for 6 <9cc?

(0] [war]| 0r s
B0 e e
I " oI

holds with probability 1 if n>n.J), where p:Sm |g(x)|dF(x). The

right-hand side of (2.14) may be smaller than ¢ for sufficiently small
0=0,.
Hence from (2.13) and (2.14)

(2.15) sup [S'ng"]z H'ng]z <e

Ieq SIdF,, SIdF

holds with probability 1 if n>n,(c)=max (n,(c), n(6.)), and the proof is
completed.
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3. Main theorems

In this section we shall state two main theorems which shows the
optimum stratifications ¢%, and ¢%¥ for the empiric distribution function
F, in cases of proportionate and Neyman allocations converge almost
surely in the following sense to optimum ones ¢* and ¢** for the true
distribution function F respectively.

As stated in Section 1, the optimum stratifications ¢* and ¢** for
the true F' attain the minimum values of the functions

4
(3.1) Giug) =3 110
and
(3.2 Gy(#) =3 Viokgo @)~ [ud T

in cases of proportionate and Neyman allocations respectively.

Let ¢, and ¢¢3 be optimum stratifications, corresponding to ¢* and
¢**, for the empiric distribution function F,(x) based on the simple ran-
dom sample of size n which is given to us in advance of stratification
operation.

Further let us define

(33) YD =), W), V)
wo@=|gdF,,  uw(g)=|egdr,

and v""(¢)=§ 2'¢dF, .

Then ¢&,=(¢¢n, -+, ¢&y) may be represented by a partition of the
real line consisting of ! disjoint intervals each of which has no sample
point on its end points as shown in Section 1.

THEOREM 1. Let F(x) be a distribution function which has a finite
Jourth moment and contains at least | points in its support. Then

(3.4) Plim Gy(y($%,)) =G(y($))} =1

holds, where G, is defined by (3.1) or (1.4), ¢* and ¢%, are optimum
stratifications in case of proportionate allocation for F and F, respec-
tively and y(9)=(w(g), w(#)).. That is, ¢%, converges almost surely to ¢*
i the above semse.

Proor. Let T be the set of all possible partitions of the real line
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consisting of ! disjoint interval, i.e.
l

T=U=(J)}, U J=(—c, )

and
JiNJ,=0 (empty) for i#k.
Then it is easily seen by Lemma 2 that
[S mdF,,(m)]z [S a:dF(:c)]z
(3.5) P{lim sup|> L& — L =0f{=1
n—oo JeT|i=1 S an(x) =1 S dF(x)
Ji Ji

holds. This means that for any positive ¢ there exists a positive inte-
ger ny(e) such that

(3.6) |G\ly™ (g Pl —Gily(g ]| <e

holds almost surely for any Je T and any 7>ny(e), where the ith com-
ponent ¢;(x) of ¢;(x) donotes the indicator function of the interval J;.

Since the optimum g¢%, for F, may be represented as ¢;., using a
partition J™ in T, then the inequality (3.6) holds almost surely for
Py if n>m(e). Therefore

(3.7) Gl[y(n)(¢,](n))] < Gl[y(¢,](n))] +e

holds almost surely for any 7>n(e).
On the other hand

(3.8) Gily(#*)]— e <Gy (FN)] S Gy (B ym)]

holds almost surely for any n>n(c) by (3.6) and the optimality of ¢,
for F,.
From (3.7) and (8.8) it is easily seen that

(3.9) Gy N —e<Gi[Y(f o) +e=Gily($*)] +e

hold almost surely for any n>mc). This is equivalent to (3.4), and
the proof is completed.

THEOREM 2. Let F(x) be a distribution function which has a ﬁmte
second moment and contains at least | points in its support. Then

(3.10) P{lim Gy(y&3)]=Gly(¢* )]} =1

where G, is defined in (8.2) or (1.5), ¢** and ¢%¥ are optimum stratifi-
cations in case of Neyman allocation for F and F, respectively, and y(¢)
=(w(g), u(g), v(¢))-
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PrROOF. Let us first note that the image S and S™ of the @ of all
stratifications by the linear mapping y(¢) and y™(¢) are compact sets in
R*. Further it is easily seen by the strong law of large numbers that
for any positive ¢

ur@)s|”_leldF@<|" [zldF@-+e

and

(w@I<|" sdr@<|" sdF@)+e
hold almost surely for n>my(c). This means the set S™ is included in
Se={¥'; ¥ =yte, yeS} for n>nye).

Since Gy(+) is continuous on the compact set S, it is uniformly con-
tinuous on S.. Besides it is easily seen by Lemma 1 that y™(¢ )=
(W™(g ), u™(d,), v™($y) converges almost surely to y(¢;) uniformly in
JeT.

Therefore

(3.11) P{rlli_{r; sup |Galy™( )] —G:ly( )] | =0} =1

holds, and hence the rest of the proof goes on in the same way as
shown in Theorem 1.

4, Conclusion

We have shown in this paper that the optimum stratifications ¢,
and ¢%¥ for the empiric distribution function F,(x) converge to the op-
timum stratifications ¢* and ¢** for a univariate distribution function
F(x) respectively, both in cases of proportionate and Neyman allocation.

There still remain the following problems :

1) It is possible to extend these results to the multivariate distribution

function F'(x)?

2) May we find some useful algorithm to find out ¢¥, and ¢*¥ for a

finite n?
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