ON THE CONVERGENCE OF OPTIMUM STRATIFICATIONS FOR EMPIRIC DISTRIBUTION FUNCTION IN UNIVARIATE CASE

YASUSHI TAGA

(Received Dec. 3, 1970)

Summary

Let $\{X_n\}$, $n=1, 2, \cdots$, be a sequence of independent random variables distributed according to a distribution function F(x) with finite variance, $F_n(x)$ be the empiric distribution function of X_1, \dots, X_n for each n, and $\phi_{(n)}^*$ and ϕ^* be optimum stratifications corresponding to $F_n(x)$ and F(x) respectively.

It is shown in this paper that $\phi_{(n)}^*$ tends almost surely to ϕ^* under a suitable criterion.

1. Introduction

Let X be an unvariate stratification variable with a marginal distribution function F(x), and Y be an unvariate objective variable with finite mean μ_0 and variance σ_0^2 , and $\eta(x)$ be the regression function of Y on X.

Let us suppose that stratification operation should be made only using the stratification variable X for estimating the mean μ_0 of Y, and that the number l of strata, the total sample size m and the sample allocation $\{m_i, 1 \le i \le l\}$ are preassigned.

Such a stratification may be expressed by a decomposition $\{F_i, 1 \le i \le l\}$ of the marginal distribution function F(x) of X, i.e.

$$\sum_{i=1}^{l} F_i(x) = F(x) \quad \text{for all } x ,$$

where $F_i(x)$ is non-negative and non-decreasing in x.

Since each measure F_i corresponding to the function $F_i(x)$ is absolutely continuous with respect to the measure F corresponding to F(x), there exists a vector-valued measurable function $\phi(x) = (\phi_1(x), \dots, \phi_l(x))$ for each decomposition $\{F_i\}$ of F such that

$$\sum_{i=1}^{l} \phi_i(x) = 1 \quad \text{a.e. } (F), \quad \phi_i(x) \ge 0 \ (1 \le i \le l) \ ,$$

and the correspondence between $\{F_i\}$ and ϕ may be regarded as one to one (see the section 3 in [1]).

In case of proportionate allocation $(m_i=w_im)$ the variance of an unbiased estimator $\bar{Y}=\sum_{i=1}^{l}w_i\bar{Y}_i$ of μ_0 , based on the random sample under a stratification ϕ , may be expressed as

$$(1.1) V(\bar{Y}|\phi) = \frac{1}{m} \left\{ \sigma_0^2 (1-\rho^2) + \sum_{i=1}^t \int_{-\infty}^{\infty} [\eta(x) - \mu_{0i}]^2 \phi_i(x) dF(x) \right\} ,$$

where $w_i = F_i(+\infty)$ is the weight of the *i*th stratum, σ_0^2 is the total variance of Y, μ_{0i} is the mean of Y in the *i*th stratum and ρ is the correlation ratio of Y on X (see the section 4 in [1]).

It is easily seen from (1.1) that $V(\bar{Y}|\phi)$ takes the minimum value at $\phi = \phi^*$ if and only if ϕ^* attains the infinum of the second term in the bracket of the right-hand side of (1.1) which is rewritten as

(1.2)
$$\sum_{i=1}^{l} \int_{-\infty}^{\infty} [\eta(x) - \mu_{0i}]^2 \phi_i(x) dF(x) = \int_{-\infty}^{\infty} \eta^2(x) dF(x) - \sum_{i=1}^{l} w_i \mu_{0i}^2 .$$

Further if the regression function is linear, i.e. $\eta(x) = \beta_0 + \beta_1 x$, then (1.2) reduces to

(1.3)
$$\sum_{i=1}^{l} \int_{-\infty}^{\infty} [\eta(x) - \mu_{0i}]^{2} \phi_{i}(x) dF(x) = \beta_{1}^{2} \left\{ \int_{-\infty}^{\infty} x^{2} dF(x) - \sum_{i=1}^{l} w_{i} \mu_{i}^{2} \right\} ,$$

where $\mu_i = \frac{1}{w_i} \int_{-\infty}^{\infty} x \phi_i(x) dF(x)$ is the mean of X in the *i*th stratum.

Therefore the optimum stratification ϕ^* attains the infimum of the function

(1.4)
$$G_1(w(\phi), u(\phi)) = -\sum_{i=1}^l \frac{[u_i(\phi)]^2}{w_i(\phi)},$$

where $w_i(\phi) = \int_{-\infty}^{\infty} \phi_i(x) dF(x)$ and $u_i(\phi) = \int_{-\infty}^{\infty} x \phi_i(x) dF(x)$. (see example i in [1], p. 123).

This fact shows that ϕ^* is identical to an optimum stratification for the marginal distribution function F(x) of the stratification variable X in the case of proportionate allocation and linear regression.

If F(x) is unknown but a simple random sample of size n (X_1, \dots, X_n) is given under the above situation in advance of stratification operation, it is necessary to make an estimate $\phi_{(n)}^*$ of ϕ^* using the given sample (X_1, \dots, X_n) and investigate its probabilistic behavior.

One way of doing this is to obtain $\phi_{(n)}^*$ as an optimum stratification for the empiric distribution function $F_n(x)$ of (X_1, \dots, X_n) , and to examine whether $G_1(w(\phi_{(n)}^*), u(\phi_{(n)}^*))$ converges almost surely to $G_1(w(\phi^*), u(\phi^*))$

or not as $n \to \infty$.

It is noted here that there exists an optimum ϕ^* for any F(x) (discrete or continuous) such that

$$\phi_i^*(x) = \left\{ egin{array}{ll} 1 & ext{if } x_{i-1}^* \leq x < x_i^* & (1 \leq i \leq l) \\ 0 & ext{otherwise} \end{array}
ight.$$

where $w_i^* = \int_{-\infty}^{\infty} \phi_i^*(x) dF(x)$, $\mu_i^* = \int_{-\infty}^{\infty} x \phi_i^*(x) dF(x)$, $(1 \le i \le l)$ $\mu_i^* < \mu_i^* < \cdots < \mu_i^*$, $x_i^* = (\mu_i^* + \mu_{i+1}^*)/2$ with no probability mass on it $(1 \le i \le l)$, $x_0^* = -\infty$ and $x_i^* = +\infty$, if the support of F(x) contains at least l points (see also [1]).

In case of Neyman allocation $\left(n_i = \frac{w_i \sigma_i}{\sum_j w_j \sigma_j} n\right)$ there exists an optimum stratification ϕ^{**} for F(x) which minimizes the function

(1.5)
$$G_2(w(\phi), u(\phi), v(\phi)) = \sum_{i=1}^l [w_i(\phi)v_i(\phi) - u_i^2(\phi)]^{1/2},$$

where $w(\phi) = \int_{-\infty}^{\infty} \phi(x) dF(x)$, $u(\phi) = \int_{-\infty}^{\infty} x \phi(x) dF(x)$ and $v(\phi) = \int_{-\infty}^{\infty} x^2 \phi(x) dF(x)$ (see [2]).

It is also of interest to investigate the probabilistic behavior of an optimum stratification $\phi_{(n)}^{***}$ for $F_n(x)$, i.e. to examine whether $G_2(w(\phi_{(n)}^{***}), u(\phi_{(n)}^{***}), v(\phi_{(n)}^{***}))$ converges almost surely to $G_2(w(\phi^{***}), u(\phi^{***}), v(\phi^{***}))$ or not as $n \to \infty$.

2. Preparatory lemmas

In this section we state two lemmas useful for deriving main theorems in the following sections.

LEMMA 1. Let F(x) be a distribution function having finite mean μ and variance σ^2 and $F_n(x)$ be the empiric distribution function of random variables distributed independently according to F(x). If g(x) is a continuous and integrable function with respect to F, then

(2.1)
$$P\left\{\lim_{n\to\infty}\sup_{x\in G}\left|\int_{I}g(x)dF_{n}-\int_{I}g(x)dF\right|=0\right\}=1$$

holds, where I is the family of all intervals on the real line.

PROOF. Since g is integrable with respect to F, for any positive ε there exists a positive constant K_{ε} such that

$$\int_{|x|>K_{\bullet}} |g(x)| dF(x) < \varepsilon$$

holds.

By the strong law of large numbers there exists a positive integer $n_1(\varepsilon)$ depending only on ε such that

(2.2)
$$\int_{|x|>K_{\bullet}} |g(x)| dF_{\pi}(x) < \int_{|x|>K_{\bullet}} |g(x)| dF(x) + \varepsilon < 2\varepsilon$$

holds with probability one for all $n > n_1(\varepsilon)$.

Let us divide the interval $[-K_{\varepsilon}, K_{\varepsilon}]$ into ν_{ε} intervals $\{I_{j}\}$ with equal length such that

$$|g(x)-g(x)|<\varepsilon$$
 for $|x-x'|<\delta_{\varepsilon}$, x and $x'\in[-K_{\varepsilon},K_{\varepsilon}]$

and

$$u_{arepsilon}\!=\!\left[\!\frac{2K_{arepsilon}}{\delta_{arepsilon}}\!
ight]\!+\!1 \;, \quad I_{\!\scriptscriptstyle f}\!=\!\left(-K_{\!\scriptscriptstyle arepsilon}\!+\!(j\!-\!1)rac{2K_{\!\scriptscriptstyle arepsilon}}{
u_{\!\scriptscriptstyle lpha}},\,-K_{\!\scriptscriptstyle arepsilon}\!+\!jrac{2K_{\!\scriptscriptstyle arepsilon}}{
u_{\!\scriptscriptstyle arepsilon}}
ight], \qquad (2\!\leq\! j\!\leq\!
u_{\!\scriptscriptstyle arepsilon})\;,$$

and

$$I_1 = \left[-K_{\varepsilon}, -K_{\varepsilon} + \frac{2K_{\varepsilon}}{\nu_{\varepsilon}} \right].$$

Let us take any fixed point x_j in each I_j $(1 \le j \le \nu_{\varepsilon})$. Then the following relations hold:

$$\left| \int_{I \cap (-K, K_j)} g(x) dF(x) - \sum_{j=1}^{\nu_{\epsilon}} g(x_j) F(I \cap I_j) \right| < \varepsilon ,$$

$$\left| \int_{I \cap (-K_{\epsilon},K_{\epsilon})} g(x) dF_n(x) - \sum_{j=1}^{\nu_{\epsilon}} g(x_j) F_n(I \cap I_j) \right| < \varepsilon ,$$

and then for any $\eta > 0$

(2.5)
$$\left| \int_{I \cap (-K_{\epsilon}, K_{\epsilon})} g(x) dF_{n}(x) - \int_{I \cap (-K_{\epsilon}, K_{\epsilon})} g(x) dF(x) \right|$$

$$< 2\varepsilon + M_{\varepsilon} \sum_{j=1}^{\nu_{\epsilon}} |F_{n}(I \cap I_{j}) - F(I \cap I_{j})| < 2\varepsilon + M_{\varepsilon} \nu_{\varepsilon} \eta$$

uniformly in I with probability one for all $n > n_2(\eta)$ by the theorem of Glivenko-Cantelli where $M_{\varepsilon} = \sup_{|x| \leq K_{\varepsilon}} |g(x)|$. If we take η for η_{ε} such that $M_{\varepsilon}\nu_{\varepsilon}\eta_{\varepsilon} < \varepsilon$, then from (2.5)

$$\left| \int_{I \cap [-K_{\epsilon}, K_{\epsilon}]} g(x) dF(x) - \int_{I \cap [-K_{\epsilon}, K_{\epsilon}]} g(x) dF(x) \right| < 3\varepsilon$$

holds uniformly in I with probability one for all $n > n_2(\eta_{\epsilon})$.

Therefore from (2.2) and (2.6) we can find a positive integer $n_0(\varepsilon)$ =

 $\max (n_1(\varepsilon), n_2(\eta_{\varepsilon}))$ such that the inequality

(2.7)
$$\left| \int_{I} g(x) dF_{n}(x) - \int_{I} g(x) dF(x) \right| < 6\varepsilon$$

holds uniformly in I with probability 1 for all $n > n_0(\epsilon)$. This result shows that (2.1) holds. Thus the proof is completed.

COROLLARY. If F(x) has the finite rth moment, then the relation

(2.8)
$$P\left\{\lim_{n\to\infty}\sup_{I\in\mathcal{I}}\left|\int_{I}x^{k}dF_{n}(x)-\int_{I}x^{k}dF(x)\right|=0\right\}=1$$

holds for $0 \le k \le r$.

Remark. In the case k=0 (2.8) is identical to the theorem of Glivenko-Cantelli.

LEMMA 2. Under the same assumptions in Lemma 1 and the assumption that $0 < \tau = \int [g(x)]^4 dF(x) < \infty$,

$$(2.9) P\left\{\lim_{n\to\infty}\sup_{I\in\mathfrak{I}}\left|\frac{\left[\int_Ig(x)dF_n(x)\right]^2}{\int_IdF_n(x)}-\frac{\left[\int_Ig(x)aF(x)\right]^2}{\int_IdF(x)}\right|=0\right\}=1.$$

holds, where both terms in the bracket in the left-hand side of (2.9) should be taken to be zero if

$$\int_{I} dF_{n}(x) = 0 \quad or \quad \int_{I} dF(x) = 0 \quad respectively.$$

PROOF. Let \mathcal{I} be the family of all intervals on the real line, and let us divide it into two sets $\mathcal{I}_{\varepsilon}$ and $\mathcal{I}'_{\varepsilon}$ for any positive ε such that

$$\mathcal{I}_{\varepsilon} = \left\{ I; \int_{I} dF(x) < \frac{\varepsilon^{2}}{9\tau} \right\} \quad \text{and} \quad \mathcal{I}'_{\varepsilon} = \mathcal{I} - \mathcal{I}_{\varepsilon}.$$

Then it is easily seen by the Schwarz's inequality

$$(2.10) \qquad \frac{\left[\int_{I} g dF\right]^{2}}{\int_{I} dF} \leq \int_{I} g^{2} dF \leq \sqrt{\int_{I} g^{4} dF} \sqrt{\int_{I} dF} < \frac{\varepsilon}{3}$$

holds for any $I \in \mathcal{I}_{\varepsilon}$. In the same way

(2.11)
$$\frac{\left[\int_{I} g dF_{n}\right]^{2}}{\int_{I} dF_{n}} \leq \int_{I} g^{2} dF_{n}$$

holds for any possible F_n . By Lemma 1 there exists a positive integer $n_1(\varepsilon)$ such that

(2.12)
$$\int_{I} g^{2} dF_{n} < \int_{I} g^{2} dF + \frac{\varepsilon}{3} < \frac{2}{3} \varepsilon$$

holds with probability 1 for any $I \in \mathcal{T}_{\varepsilon}$ for $n > n_{I}(\varepsilon)$. Therefore from (2.10) and (2.12)

(2.13)
$$\sup_{I \in \mathcal{I}_{\bullet}} \left| \frac{\left[\int_{I} g dF_{n} \right]^{2}}{\int_{I} dF_{n}} - \frac{\left[\int_{I} g dF \right]^{2}}{\int_{I} dF} \right| < \varepsilon$$

holds with probability 1 for any $I \in \mathcal{I}_{\varepsilon}$ for $n > n_{1}(\varepsilon)$. On the other hand the inequality

$$\int_{I} dF(x) \ge \frac{\varepsilon^2}{9\tau}$$

holds for any $I \in \mathcal{I}'_{\varepsilon}$. Let us put

$$\eta_{1n} = \int_I g dF_n - \int_I g dF$$
 and $\eta_{2n} = \int_I dF_n - \int_I dF$.

For any $\delta > 0$ there exists a positive integer $n_2(\delta)$ by Lemma 1 such that

$$|\eta_{1n}| < \delta$$
 and $|\eta_{2n}| < \delta$

hold with probability 1 uniformly in $I \in \mathcal{I}'_{\varepsilon}$ for all $n > n_2(\delta)$. Therefore it is easily seen that for $\delta < 9\tau_{\varepsilon}^{-2}$

$$(2.14) \qquad \sup_{I \in \mathcal{I}'_{\star}} \left| \frac{\left[\int_{I} g dF_{n} \right]^{2}}{\int_{I} dF_{n}} - \frac{\left[\int_{I} g dF \right]^{2}}{\int_{I} dF} \right| \leq \frac{\delta}{\varepsilon^{2}/9\tau - \delta} \left(2\rho + \delta + \frac{9\tau\rho^{2}}{\varepsilon^{2}} \delta \right)$$

holds with probability 1 if $n > n_2(\delta)$, where $\rho = \int_{-\infty}^{\infty} |g(x)| dF(x)$. The right-hand side of (2.14) may be smaller than ε for sufficiently small $\delta = \delta_{\varepsilon}$.

Hence from (2.13) and (2.14)

(2.15)
$$\sup_{I \in \mathcal{I}} \left| \frac{\left[\int_{I} g dF_{n} \right]^{2}}{\int_{I} dF_{n}} - \frac{\left[\int_{I} g dF \right]^{2}}{\int_{I} dF} \right| < \varepsilon$$

holds with probability 1 if $n > n_0(\varepsilon) = \max(n_1(\varepsilon), n_2(\delta_{\varepsilon}))$, and the proof is completed.

3. Main theorems

In this section we shall state two main theorems which shows the optimum stratifications $\phi_{(n)}^*$ and $\phi_{(n)}^{**}$ for the empiric distribution function F_n in cases of proportionate and Neyman allocations converge almost surely in the following sense to optimum ones ϕ^* and ϕ^{**} for the true distribution function F respectively.

As stated in Section 1, the optimum stratifications ϕ^* and ϕ^{**} for the true F attain the minimum values of the functions

(3.1)
$$G_{1}(y(\phi)) = -\sum_{i=1}^{l} \frac{[u_{i}(\phi)]^{2}}{w_{i}(\phi)}$$

and

(3.2)
$$G_2(y(\phi)) = \sum_{i=1}^{l} \sqrt{w_i(\phi)v_i(\phi) - [u_i(\phi)]^2}$$

in cases of proportionate and Neyman allocations respectively.

Let $\phi_{(n)}^*$ and $\phi_{(n)}^{**}$ be optimum stratifications, corresponding to ϕ^* and ϕ^{**} , for the empiric distribution function $F_n(x)$ based on the simple random sample of size n which is given to us in advance of stratification operation.

Further let us define

(3.3)
$$y^{(n)} = (w^{(n)}(\phi), u^{(n)}(\phi), v^{(n)}(\phi)),$$

$$w^{(n)}(\phi) = \int \phi dF_n, \qquad u^{(n)}(\phi) = \int x \phi dF_n$$
and
$$v^{(n)}(\phi) = \int x^2 \phi dF_n.$$

Then $\phi_{(n)}^* = (\phi_{(n)1}^*, \dots, \phi_{(n)l}^*)$ may be represented by a partition of the real line consisting of l disjoint intervals each of which has no sample point on its end points as shown in Section 1.

THEOREM 1. Let F(x) be a distribution function which has a finite fourth moment and contains at least l points in its support. Then

(3.4)
$$P\{\lim_{n\to\infty} G_{i}(y(\phi_{(n)}^{*})) = G_{i}(y(\phi^{*}))\} = 1$$

holds, where G_1 is defined by (3.1) or (1.4), ϕ^* and $\phi_{(n)}^*$ are optimum stratifications in case of proportionate allocation for F and F_n respectively and $y(\phi) = (w(\phi), u(\phi))$. That is, $\phi_{(n)}^*$ converges almost surely to ϕ^* in the above sense.

PROOF. Let T be the set of all possible partitions of the real line

consisting of l disjoint interval, i.e.

$$T = \{J = (J_1, \cdots, J_l)\}$$
, $\bigcup_{i=1}^l J_i = (-\infty, \infty)$

and

$$J_i \cap J_k = 0$$
 (empty) for $i \neq k$.

Then it is easily seen by Lemma 2 that

$$(3.5) \qquad P\left\{\lim_{n\to\infty}\sup_{\boldsymbol{J}\in\boldsymbol{T}}\left|\sum_{i=1}^{l}\frac{\left[\int_{\boldsymbol{J}_{i}}xdF_{n}(x)\right]^{2}-\sum_{i=1}^{l}\frac{\left[\int_{\boldsymbol{J}_{i}}xdF(x)\right]^{2}}{\int_{\boldsymbol{J}_{i}}dF(x)}\right|=0\right\}=1$$

holds. This means that for any positive ε there exists a positive integer $n_0(\varepsilon)$ such that

$$(3.6) |G_1[y^{(n)}(\phi_I)] - G_1[y(\phi_I)]| < \varepsilon$$

holds almost surely for any $J \in T$ and any $n > n_0(\varepsilon)$, where the *i*th component $\phi_L(x)$ of $\phi_I(x)$ donotes the indicator function of the interval J_i .

Since the optimum $\phi_{(n)}^*$ for F_n may be represented as $\phi_{J^{(n)}}$ using a partition $J^{(n)}$ in T, then the inequality (3.6) holds almost surely for $\phi_{J^{(n)}}$ if $n > n_0(\varepsilon)$. Therefore

(3.7)
$$G_1[y^{(n)}(\phi_{J(n)})] < G_1[y(\phi_{J(n)})] + \varepsilon$$

holds almost surely for any $n > n_0(\varepsilon)$.

On the other hand

(3.8)
$$G_1[y(\phi^*)] - \varepsilon < G_1[y^{(n)}(\phi^*)] \le G_1[y^{(n)}(\phi_{J^{(n)}})]$$

holds almost surely for any $n > n_0(\epsilon)$ by (3.6) and the optimality of $\phi_{J(n)}$ for F_n .

From (3.7) and (3.8) it is easily seen that

(3.9)
$$G_{\mathbf{i}}[y(\phi^*)] - \varepsilon < G_{\mathbf{i}}[y(\phi_{\mathbf{J}(\mathbf{n})})] + \varepsilon \leq G_{\mathbf{i}}[y(\phi^*)] + \varepsilon$$

hold almost surely for any $n > n_0(\varepsilon)$. This is equivalent to (3.4), and the proof is completed.

THEOREM 2. Let F(x) be a distribution function which has a finite second moment and contains at least l points in its support. Then

(3.10)
$$P\{\lim_{n\to\infty} G_2(y_{(n)}^{**})\} = G_2[y(\phi^{**})]\} = 1$$

where G_2 is defined in (3.2) or (1.5), ϕ^{**} and ϕ_n^{**} are optimum stratifications in case of Neyman allocation for F and F_n respectively, and $y(\phi) = (w(\phi), u(\phi), v(\phi))$.

PROOF. Let us first note that the image S and $S^{(n)}$ of the Φ of all stratifications by the linear mapping $y(\phi)$ and $y^{(n)}(\phi)$ are compact sets in R^{3i} . Further it is easily seen by the strong law of large numbers that for any positive ε

$$|u_i^{(n)}(\phi)| \le \int_{-\infty}^{\infty} |x| dF_n(x) < \int_{-\infty}^{\infty} |x| dF(x) + \varepsilon$$

and

$$|v_i^{(n)}(\phi)| \le \int_{-\infty}^{\infty} x^2 dF_n(x) < \int_{-\infty}^{\infty} x^2 dF(x) + \varepsilon$$

hold almost surely for $n > n_0(\varepsilon)$. This means the set $S^{(n)}$ is included in $S_{\varepsilon} = \{y'; y' = y \pm \varepsilon, y \in S\}$ for $n > n_0(\varepsilon)$.

Since $G_2(\cdot)$ is continuous on the compact set S_{ε} , it is uniformly continuous on S_{ε} . Besides it is easily seen by Lemma 1 that $y^{(n)}(\phi_{J}) = (w^{(n)}(\phi_{J}), u^{(n)}(\phi_{J}), v^{(n)}(\phi_{J}))$ converges almost surely to $y(\phi_{J})$ uniformly in $J \in T$.

Therefore

(3.11)
$$P\{\lim_{n\to\infty} \sup_{\bm{J}\in \bm{T}} |G_2[y^{(n)}(\phi_{\bm{J}})] - G_2[y(\phi_{\bm{J}})]| = 0\} = 1$$

holds, and hence the rest of the proof goes on in the same way as shown in Theorem 1.

4. Conclusion

We have shown in this paper that the optimum stratifications $\phi_{(n)}^*$ and $\phi_{(n)}^{**}$ for the empiric distribution function $F_n(x)$ converge to the optimum stratifications ϕ^* and ϕ^{**} for a univariate distribution function F(x) respectively, both in cases of proportionate and Neyman allocation.

There still remain the following problems:

- 1) It is possible to extend these results to the multivariate distribution function F(x)?
- 2) May we find some useful algorithm to find out $\phi_{(n)}^*$ and $\phi_{(n)}^{**}$ for a finite n?

INSTITUTE OF STATISTICAL MATHEMATICS

REFERENCES

- [1] Y. Taga (1967). On optimum stratification for the objective variable based on concomitant variables using prior information, Ann. Inst. Statist. Math., 19, 101-129.
- [2] K. Isii and Y. Taga (1969). On optimal stratifications for multivariate distributions, Skand. Aktuar Tidsr., no. 1-2, 24-38.
- [3] M. Loève (1955). Probability Theory, Van Nostrand, 20-21.
- [4] G. Suzuki (1965). On the Glivenko-Cantelli theorem, Ann. Inst. Statist. Math., 18, 29-37.