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1. Introduction and summary

Let A be a (pXp) symmetric positive definite matrix having the
noncentral Wishart density.

where
| A |77~ exp {—% tr Z"‘A}
(1.2) W(A|Z|g)= -
2«?/211‘,[E_q]| Y lq/z
and
(1 3) I 1 — A (DX(P-1/4 A r 1 1—i
) 2|5 I| =" ;Ul ?(Q+ -1/,

and Fi(q/2, X713 'A/2) is a hypergeometric function of matrix argu-
ments, see ([7], p. 733). Let B be another (pXp) symmetric positive
definite matrix, having central Wishart density

(1.4) f(B)=W(B|Z|n—q) .

Assuming the matrix 2 to be of rank s<p we make the transfor-
mations

(1.5) A=C(I-L)C', B=CC',

where C is a lower triangular matrix of order p. The noncentral multi-
variate beta density of the (pXxp) matrix L is found by Radcliffe ([7],
p, 734) to be
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(1.6) g(L)=| L |2 [-L|@*"PR§(Ly,) ,

where 6(L,), see Radcliffe ([7], p. 734), involves only the elements of
sXs matrix L, and other parameters but not any other elements of L.
The noncentral multivariate beta density of L is a direct generalization
of the noncentral linear beta density of rank one of L as given by
Kshirsagar [5], who used the density of L, to derive the distribution
of the test criterion for testing the adequacy of a single hypothetical
discriminant function. Radcliffe generalizes Kshirsagar’s results and
gives the test criterion for testing the adequacy of s (<p) hypothetical
discriminant functions. If Iz, where I"” is an sXp matrix of rank s,
denote the s discriminant functions, then 4=|L| may be factorized as

1.7 A=4,4;| Ly |
where the direction and collinearity factors 4, and 4, are

_ |I"AB"(B—A)["||I"BI|
| I"(B—A) |

P |I"(B— A)T|| I"AT"|
*"|Ly| |I"BC||T"TAB(B—A)T|

(1.8)

It may be noted that the factorization of A, given here, is a generaliza-
tion of the factorization given by Bartlett [2].

By choosing I"=(I, 0) where I is an sxs identity matrix and faec-
torizing the density of L in terms of rectangular coordinates 7, L= T'T",
T a lower triangular, Radcliffe [7] expresses the densities of 4, and 4,
in terms of the elements of 7. He also gives another factorization of
4 as, Radcliffe ([7], p. 732),

(1.9) A=As44|Ly, I ’

where

_|B—A||I"AT+I"A(B—A)'AT'|
[B[|[IT"AT|

L | "Bl || I AT" |
T (B—A) ||I"Al+T"A(B— A) Al |

As and 4; are also useful for testing direction and collinearity of the
hypothetical discriminant functions I”z. Following Kshirsagar’s [6] meth-
od, Radcliffe expresses A; and Ay as functions of the elements of T and
obtains their distributions. We are giving here a shorter and neater
proof, which might be of pedagogical interest. Also our main interest
is to express 4,, 4,, 4; and 4, as functions of the elements of L, rather
than functions of elements of 7. All distributions are derived without
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the constant factor, K is used as a generic symbol for the constant
factors of the density functions.

2. Distribution of A4, and 4,
By partitioning I, and I—L as

L, L I-L, —L
2.1 L= < 11 12) , I—L= ( 1 12 )
Lgl L22 _L21 I- L22

and using (1.6) we write the joint density of L., Ly, L, as,

(2.2)  f(Lu, Ly, Lyu)=K| Ly |97 | I—= Ly |7*2 0(Lyy)
« | Lyy— Loy Lij' Ly, |n~ 272~
« | I—Loy— Lyy(I— Lyy) Ly |77~V |

On setting

Z=Ly—LyLi'Ly,
(2.8)
R= (I_ LZI(LII(I_ Lu))_anz)_mZ(I_ Lm(Lu(I_ Lu))_lle)_I/2 .

We find that the joint density of L, L, and R is given by

(2.4) S(Luy, Ly, R)y=K| Ly |47 | I L, |27V 6(Lyy)
‘ | I— Lz:(Lu(I— Ln))_lle l(n_y_s_l)/z
. I R |(n—q—p—1)/2 II_R |(q—p—l)/2 .

Again we set 4=Ly(L,(I—Ly))"L,; and assuming (p—s)<s we use Hsu's
lemma, (Anderson [1], p. 319, Lemma 13.3.1) to integrate (2.4) with re-
spect to the elements of L, and find the joint density of L,, 4 and R
to be

(2.5) L, 4, RY=K | Ly [ | I Ly [~ 0(Ly)
. I I__A |(n-17-—:—l)/2 I A I(Zt—p—l)/Z
. [Rl(n—q—p-—l)/Z | I___Rl(q—p—n/z .

By setting I"=(I, 0), it may be easily seen that
(2.6) A=|I1—4)| and A=|R|.

It follows from (2.5) that the densities of 4, and 4, are mutually
independent. The densities of 4, and A4, are identical with those of a
product of independent beta variates. This result agrees with the one
given by Radecliffe ([7], p. 738), except the fact that we assume p=<2s
and Radcliffe assumes p=2s.
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3. Distribution of 4; and 4,
Noting that,

3.1 A= |z]
) " 24 Lo(Ly(I— L)) "Ly |

s=|2+ Ly(Ly(I—Ly;)) 'Ly, |, we set z=PP’, where P is a nonsingular
matrix of order (p—s8)X(p—s). The joint density of L, P and L,, may
be obtained by using the result (2.3), and we find that

(3.2) S(Ly, P, Ly)=K| Ly, |77~V | I— Ly, | 47>~P2§(Ly,)
° l I- PP,_’LZI(LII(I_LH))_lle |(q_}’—l)/2
. I PPI l(n—q—p)/Z .

Further transforming L, to 5, where 7 is an (p—s)xs, by the re-
lation

(3.3) L21=P7}
the joint density of L,, P and 7 is found to be
(3.4) f(Ly, P, p)=K| Ly |»=972=0%2 | [— L, [‘<-»=b2¢(L,,)

o | P+ 9(Lyy(I— Ly)) 'y ) P! |m-a-2to/2

o« | I+ p(Ly(I— Lyy)) 'ty |~ ma-pto/2
. I I_“ P(I+ 7](L11(I_ Ln))_lv’)Pl |(q—p—1)/2 .

Now we set
(3.5) P(I+9(Ly(I—Ly) ' )P' =W

and using Hsu’s lemma (Anderson [1], Lemma 13.8.1) we find the joint
density of W, » and L, to be

(3.6) S (L, W, 9) =K | Ly, [*7977702 |I— Ly |77 9(Ly,)
[ I+ 9(Ly(I— Ly)) 'y |~
. I Wl(n—q—p+t—l)/2 I I_Wl(q—p—l)/Z .

Further setting
(3.7) v(Lu(I—Lu))_IvIZG
and using (3.6) and Hsu’s lemma we get

(3.8) S(Lisy G, W)=K| Ly, |"797*"V% | [— Ly, |“7*~ 22 §(Lyy)
- I+G |~ |G I(ﬁa-p—l)/z
. IWI(n-q—p+n—l)/2 I I_Wl(q-p-l)/z
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Again trahsforming G to H ‘by the transformation
(3.9 H=(I+G)"

and noting that the Jacobian of the transformation from H to G is
| I+G|~***" we obtain the joint density of L,, H and W to be

(3.10) f(Ly, HW)=K| Ly |""977P* |[— Ly, |72 §(Ly,)
. l Hl(n—p—t—l),z l I_Hl(Z:—p—l)/Z
. |Wl(n—q—p+l—1)/2 l I_Wl(q—p—l)/2 .

Here we note that 4;=|H| and A,=|W|. It, thus, follows that the
densities of 4; and A4; are independent. This result agrees with the one
given by Radcliffe ([7], p. 739), except that we assume p<2s while
Radcliffe assumes p=2s.

4. Distribution of 4, and A,

We have noted above that the A, is distributed as a product of
(p—s) independent beta variables and as such we must be able to fac-
torize A4, into (p—s) mutually independent beta variables. Consider the
factorization of A, into two parts

(4.1) A=44,,

where A;=4,,, 4, being the first element of the matrix 4= Ly (L,(I—
Ly)'Ly,. From (2.5) we find the density of the (p—s)X(p—s) matrix
4 to be

4.2) F)=K|I—4 |92k g|@-p-02
Partitioning 4 and I—4 as

4, 4 o (1—4, —4
4.3 A___ < 11 12) I_A_: ( 11 12>
(4.3) dy 4y —dy I—4y

where 4, is 1x1, 4, is 1X(p—s), 4y is (p—s—1)X(p—s—1), the joint
density of 4,;, 4;; and 4,; can be written as

Qs—p—-1)/2
4.4  f(du, 4y, Azz)=KA§§"""’/2|Agz—__":’l"“ | ’
11

(n—q—8),2
’

AZIAII

R a

Now we set

(4.5) M=42,—"_3‘L=

11



102 R. P. GUPTA AND D. G. KABE

and find the joint density of 4;,,, M and 4, to be

(4.6)  f(du, 4y, M)=K432~02 | M |®-?-02
g 4.4 (n—q—28)/2
. (l_A )(n q—8/2 I_M__ 21412
! 4,(1—4y)
substitute

Azn =4u(1 —An)w(I -M )1/25 ’
we obtain the joint density of 4,,, M and & as

4.7) f(dy, M, 6)= K43 gp-1-/2
c (1—=dy) P91 — 4, )7-+-b
o | M |22 | [ M |tn=a=s+D/2
. [ I__aal I(n-—q—c)/z

from (4.7) we see that the densities of 4,=4,, and A,=|M| are inde-
pendent.  We also note that 4,,|M|=4,4,=4,. Radcliffe derives the
distribution of 4; and A4, for the particular case s=2. We also proceed
to obtain the results for s=2. In this case we proceed as follows.
From equation (2.4) the density of L, and L, for s=2, is

(4.8) S(Lyy, Lys)=0(Ly) | Ly |4 2702 | I— Ly |“97272
. { | Lif(I— Lyy)— Lyy Ly | }(n—p—s)/z .
| Ly || I— Ly |
Let L,;L,=V, using Hsu’s lemma, the joint density of L, and V is
(4.9) S(Ly, V)=K| Ly |77 P2 | [— Ly, |“7*"V2(Ly,)
. { | Lu(I—Ly)—V| } mpmbA |V |@5n
| Ly [| I— Ly |

Further setting

Ly(I- L,)-V=R
(4.10) 1

L,(I- Lu) =yU’

where U is a lower triangular matrix and R=UFU’ we find that the
density of the matrix F is independent of L and is given by

(4.11) F(F)=K|F|o~vo2| [ F|*-5e

We further note that 4,=|F|, A4,=f,, where f,, is the first element
of F. Proceeding on similar lines as in (4.3) and (4.4) and setting z,=
Su—filfe and fo=(Q1—,)"(1—f)"*f{*; the joint density of fi,, Za
and x;; can be expressed as
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F(Fus By 0) = KFL7 DAL= ) 7Pty 2o
¢ (L) PO ) 7

It follows from (4.12) that beta densities of fj;=4;, z»=4, are independ-
ent. This result agrees with the one given by Radcliffe ([7], p. 740).
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