DISTRIBUTION OF CERTAIN FACTORS USEFUL IN DISCRIMINANT ANALYSIS*

R. P. GUPTA AND D. G. KABE

(Received Sept. 9, 1969; revised May 1, 1970)

1. Introduction and summary

Let A be a $(p \times p)$ symmetric positive definite matrix having the noncentral Wishart density.

(1.1)
$$f(A) = \exp \left[-\operatorname{tr}(\Sigma^{-1}\Omega)\right]_{0}F_{1}\left(\frac{1}{2}q, \frac{1}{2}\Sigma^{-1}\Omega\Sigma^{-1}A\right)W(A\mid\Sigma\mid q)$$

where

(1.2)
$$W(A \mid \Sigma \mid q) = \frac{\mid A \mid^{(q-p-1)/2} \exp \left\{ -\frac{1}{2} \operatorname{tr} \Sigma^{-1} A \right\}}{2^{qp/2} \Gamma_p \left\lceil \frac{1}{2} q \right\rceil \mid \Sigma \mid^{q/2}}$$

and

(1.3)
$$\Gamma_{p} \left[\frac{1}{2} q \right] = \pi^{(p)(p-1)/4} \prod_{i=1}^{p} \Gamma \left[\frac{1}{2} (q+1-i) \right] ,$$

and ${}_{0}F_{1}(q/2, \Sigma^{-1}\Omega\Sigma^{-1}A/2)$ is a hypergeometric function of matrix arguments, see ([7], p. 733). Let B be another $(p \times p)$ symmetric positive definite matrix, having central Wishart density

$$(1.4) f(B) = W(B \mid \Sigma \mid n-q).$$

Assuming the matrix Ω to be of rank s < p we make the transformations

$$(1.5) A = C(I - L)C', B = CC',$$

where C is a lower triangular matrix of order p. The noncentral multivariate beta density of the $(p \times p)$ matrix L is found by Radcliffe ([7], p, 734) to be

^{*} This research was supported by the National Research Council of Canada grant.

(1.6)
$$g(L) = |L|^{(n-p-q-1)/2} |I-L|^{(q-p-1)/2} \theta(L_{11}),$$

where $\theta(L_{11})$, see Radcliffe ([7], p. 734), involves only the elements of $s \times s$ matrix L_{11} and other parameters but not any other elements of L. The noncentral multivariate beta density of L is a direct generalization of the noncentral linear beta density of rank one of L as given by Kshirsagar [5], who used the density of L, to derive the distribution of the test criterion for testing the adequacy of a single hypothetical discriminant function. Radcliffe generalizes Kshirsagar's results and gives the test criterion for testing the adequacy of s (< p) hypothetical discriminant functions. If $\Gamma'x$, where Γ' is an $s \times p$ matrix of rank s, denote the s discriminant functions, then A = |L| may be factorized as

$$(1.7) \Lambda = \Lambda_1 \Lambda_2 |L_{11}|$$

where the direction and collinearity factors Λ_1 and Λ_2 are

(1.8)
$$\Lambda_{1} = \frac{|\Gamma'AB^{-1}(B-A)\Gamma||\Gamma'B\Gamma|}{|\Gamma'(B-A)\Gamma|}$$

$$\Lambda_{2} = \frac{\Lambda}{|L_{11}|} \frac{|\Gamma'(B-A)\Gamma||\Gamma'A\Gamma|}{|\Gamma'B\Gamma||\Gamma'AB^{-1}(B-A)\Gamma|}.$$

It may be noted that the factorization of Λ , given here, is a generalization of the factorization given by Bartlett [2].

By choosing $\Gamma'=(I,0)$ where I is an $s\times s$ identity matrix and factorizing the density of L in terms of rectangular coordinates T, L=TT', T a lower triangular, Radcliffe [7] expresses the densities of Λ_1 and Λ_2 in terms of the elements of T. He also gives another factorization of Λ as, Radcliffe ([7], p. 732),

$$\Lambda = \Lambda_5 \Lambda_6 |L_{11}|,$$

where

$$\Lambda_{5} = \frac{|B-A||\Gamma'A\Gamma+\Gamma'A(B-A)^{-1}A\Gamma|}{|B||\Gamma'A\Gamma|}$$

$$\Lambda_{6} = \frac{|\Gamma'B\Gamma||\Gamma'A\Gamma|}{|\Gamma'(B-A)\Gamma||\Gamma'A\Gamma+\Gamma'A(B-A)^{-1}A\Gamma|}$$

 Λ_5 and Λ_6 are also useful for testing direction and collinearity of the hypothetical discriminant functions $\Gamma'x$. Following Kshirsagar's [6] method, Radcliffe expresses Λ_5 and Λ_6 as functions of the elements of T and obtains their distributions. We are giving here a shorter and neater proof, which might be of pedagogical interest. Also our main interest is to express Λ_1 , Λ_2 , Λ_5 and Λ_6 as functions of the elements of L, rather than functions of elements of T. All distributions are derived without

the constant factor, K is used as a generic symbol for the constant factors of the density functions.

2. Distribution of Λ_1 and Λ_2

By partitioning L and I-L as

(2.1)
$$L = \begin{pmatrix} L_{11} & L_{12} \\ L_{21} & L_{22} \end{pmatrix}, \qquad I - L = \begin{pmatrix} I - L_{11} & -L_{12} \\ -L_{21} & I - L_{22} \end{pmatrix}$$

and using (1.6) we write the joint density of L_{11} , L_{21} , L_{22} , as,

(2.2)
$$f(L_{11}, L_{21}, L_{22}) = K |L_{11}|^{(n-q-p-1)/2} |I - L_{11}|^{(q-p-1)/2} \theta(L_{11}) \cdot |L_{22} - L_{21}L_{11}^{-1}L_{12}|^{(n-q-p-1)/2} \cdot |I - L_{12}|^{(q-p-1)/2} \cdot |I - L_{12} - L_{21}(I - L_{11})^{-1}L_{12}|^{(q-p-1)/2}.$$

On setting

$$(2.3) \begin{cases} Z = L_{22} - L_{21}L_{11}^{-1}L_{12} \\ R = (I - L_{21}(L_{11}(I - L_{11}))^{-1}L_{12})^{-1/2}Z(I - L_{21}(L_{11}(I - L_{11}))^{-1}L_{12})^{-1/2} \end{cases}.$$

We find that the joint density of L_{11} , L_{21} and R is given by

(2.4)
$$f(L_{11}, L_{21}, R) = K |L_{11}|^{(n-q-p-1)/2} |I - L_{11}|^{(q-p-1)/2} \theta(L_{11}) \cdot |I - L_{21}(L_{11}(I - L_{11}))^{-1} L_{12}|^{(n-p-s-1)/2} \cdot |R|^{(n-q-p-1)/2} |I - R|^{(q-p-1)/2}.$$

Again we set $\Delta = L_{21}(L_{11}(I-L_{11}))^{-1}L_{12}$ and assuming $(p-s) \le s$ we use Hsu's lemma, (Anderson [1], p. 319, Lemma 13.3.1) to integrate (2.4) with respect to the elements of L_{21} and find the joint density of L_{11} , Δ and R to be

(2.5)
$$f(L_{11}, \Delta, R) = K |L_{11}|^{(n-q-s-1)/2} |I - L_{11}|^{(q-s-1)/2} \theta(L_{11}) \cdot |I - \Delta|^{(n-p-s-1)/2} |\Delta|^{(2s-p-1)/2} \cdot |R|^{(n-q-p-1)/2} |I - R|^{(q-p-1)/2}.$$

By setting $\Gamma' = (I, 0)$, it may be easily seen that

(2.6)
$$\Lambda_1 = |I - \Delta| \quad \text{and} \quad \Lambda_2 = |R|.$$

It follows from (2.5) that the densities of Λ_1 and Λ_2 are mutually independent. The densities of Λ_1 and Λ_2 are identical with those of a product of independent beta variates. This result agrees with the one given by Radcliffe ([7], p. 738), except the fact that we assume $p \leq 2s$ and Radcliffe assumes $p \geq 2s$.

3. Distribution of Λ_5 and Λ_6

Noting that,

 $A_5 = |z + L_{21}(L_{11}(I - L_{11}))^{-1}L_{12}|$, we set z = PP', where P is a nonsingular matrix of order $(p-s) \times (p-s)$. The joint density of L_{11} , P and L_{12} may be obtained by using the result (2.3), and we find that

(3.2)
$$f(L_{11}, P, L_{12}) = K |L_{11}|^{(n-q-p-1)/2} |I - L_{11}|^{(q-p-1)/2} \theta(L_{11}) \cdot |I - PP' - L_{21}(L_{11}(I - L_{11}))^{-1} L_{12}|^{(q-p-1)/2} \cdot |PP'|^{(n-q-p)/2}.$$

Further transforming L_{21} to η , where η is an $(p-s)\times s$, by the relation

$$(3.3) L_{21} = P\eta$$

the joint density of L_{11} , P and η is found to be

(3.4)
$$f(L_{11}, P, \eta) = K |L_{11}|^{(n-q-p-1)/2} |I - L_{11}|^{(q-p-1)/2} \theta(L_{11}) \cdot |P(I + \eta(L_{11}(I - L_{11}))^{-1} \eta') P'|^{(n-q-p+s)/2} \cdot |I + \eta(L_{11}(I - L_{11}))^{-1} \eta'|^{-(n-q-p+s)/2} \cdot |I - P(I + \eta(L_{11}(I - L_{11}))^{-1} \eta') P'|^{(q-p-1)/2}.$$

Now we set

(3.5)
$$P(I+\eta(L_{11}(I-L_{11}))^{-1}\eta')P'=W$$

and using Hsu's lemma (Anderson [1], Lemma 13.3.1) we find the joint density of W, η and L_{ii} to be

(3.6)
$$f(L_{11}, W, \eta) = K |L_{11}|^{(n-q-p-1)/2} |I - L_{11}|^{(q-p-1)/2} \theta(L_{11}) \cdot |I + \eta(L_{11}(I - L_{11}))^{-1} \eta'|^{-(n-q)/2} \cdot |W|^{(n-q-p+s-1)/2} |I - W|^{(q-p-1)/2}.$$

Further setting

(3.7)
$$\eta(L_{11}(I-L_{11}))^{-1}\eta' = G$$

and using (3.6) and Hsu's lemma we get

(3.8)
$$f(L_{11}, G, W) = K |L_{11}|^{(n-q-s-1)/2} |I - L_{11}|^{(q-s-1)/2} \theta(L_{11}) \cdot |I + G|^{-(n-q)/2} |G|^{(2s-p-1)/2} \cdot |W|^{(n-q-p+s-1)/2} |I - W|^{(q-p-1)/2}$$

Again transforming G to H by the transformation

$$(3.9) H = (I+G)^{-1}$$

and noting that the Jacobian of the transformation from H to G is $|I+G|^{-(p-s+1)}$ we obtain the joint density of L_{11} , H and W to be

(3.10)
$$f(L_{11}, H, W) = K |L_{11}|^{(n-q-p-1)/2} |I - L_{11}|^{(q-s-1)/2} \theta(L_{11}) \cdot |H|^{(n-p-s-1)/2} |I - H|^{(2s-p-1)/2} \cdot |W|^{(n-q-p+s-1)/2} |I - W|^{(q-p-1)/2}.$$

Here we note that $\Lambda_6 = |H|$ and $\Lambda_5 = |W|$. It, thus, follows that the densities of Λ_6 and Λ_5 are independent. This result agrees with the one given by Radcliffe ([7], p. 739), except that we assume $p \le 2s$ while Radcliffe assumes $p \ge 2s$.

4. Distribution of Λ_3 and Λ_4

We have noted above that the Λ_1 is distributed as a product of (p-s) independent beta variables and as such we must be able to factorize Λ_1 into (p-s) mutually independent beta variables. Consider the factorization of Λ_1 into two parts

$$(4.1) \Lambda_1 = \Lambda_3 \Lambda_4 ,$$

where $\Lambda_3 = \Delta_{11}$, Δ_{11} being the first element of the matrix $\Delta = L_{21}(L_{11}(I - L_{11}))^{-1}L_{12}$. From (2.5) we find the density of the $(p-s)\times(p-s)$ matrix Δ to be

(4.2)
$$f(\Delta) = K |I - \Delta|^{(n-q-s)/2} |\Delta|^{(2s-p-1)/2}.$$

Partitioning Δ and $I-\Delta$ as

where Δ_{11} is 1×1 , Δ_{12} is $1\times (p-s)$, Δ_{22} is $(p-s-1)\times (p-s-1)$, the joint density of Δ_{11} , Δ_{12} and Δ_{22} can be written as

$$(4.4) f(\Delta_{11}, \Delta_{12}, \Delta_{22}) = K \Delta_{11}^{(2s-p-1)/2} \left| \Delta_{22} - \frac{\Delta_{21}\Delta_{12}}{\Delta_{11}} \right|^{(2s-p-1)/2} \\ \cdot (1 - \Delta_{11})^{(n-q-s)/2} \left| I - \Delta_{22} - \frac{\Delta_{21}\Delta_{12}}{1 - \Delta_{11}} \right|^{(n-q-s)/2},$$

Now we set

$$M = \Delta_{22} - \frac{\Delta_{21}\Delta_{12}}{\Delta_{11}}$$

and find the joint density of Δ_{11} , M and Δ_{21} to be

(4.6)
$$f(\Delta_{11}, \Delta_{21}, M) = K \Delta_{11}^{(2s-p-1)/2} |M|^{(2s-p-1)/2} \cdot (1 - \Delta_{11})^{(n-q-s)/2} \left| I - M - \frac{\Delta_{21} \Delta_{12}}{\Delta_{11} (1 - \Delta_{11})} \right|^{(n-q-s)/2}$$

substitute

$$\Delta_{21} = \Delta_{11}(1 - \Delta_{11})^{1/2}(I - M)^{1/2}\delta$$
,

we obtain the joint density of Δ_{11} , M and δ as

(4.7)
$$f(\Delta_{11}, M, \delta) = K \Delta_{11}^{(2s-p-1)/2} \Delta_{11}^{(p-s-1)/2} \\ \cdot (1 - \Delta_{11})^{(n-q-s)/2} (1 - \Delta_{11})^{(p-s-1)/2} \\ \cdot |M|^{(2s-p-1)/2} |I - M|^{(n-q-s+1)/2} \\ \cdot |I - \delta \delta'|^{(n-q-s)/2}$$

from (4.7) we see that the densities of $\Lambda_3 = \Delta_{11}$ and $\Lambda_4 = |M|$ are independent. We also note that $\Delta_{11} |M| = \Lambda_3 \Lambda_4 = \Lambda_1$. Radcliffe derives the distribution of Λ_3 and Λ_4 for the particular case s=2. We also proceed to obtain the results for s=2. In this case we proceed as follows. From equation (2.4) the density of L_{11} and L_{12} , for s=2, is

(4.8)
$$f(L_{11}, L_{12}) = \theta(L_{11}) | L_{11}|^{(n-q-p-1)/2} | I - L_{11}|^{(q-p-1)/2}$$

$$\cdot \left\{ \frac{|L_{11}(I - L_{11}) - L_{12}L_{21}|}{|L_{11}| | I - L_{11}|} \right\}^{(n-p-3)/2}.$$

Let $L_{12}L_{21}=V$, using Hsu's lemma, the joint density of L_{11} and V is

(4.9)
$$f(L_{11}, V) = K |L_{11}|^{(n-p-q-1)/2} |I - L_{11}|^{(q-p-1)/2} \theta(L_{11}) \cdot \left\{ \frac{|L_{11}(I - L_{11}) - V|}{|L_{11}||I - L_{11}|} \right\}^{(n-p-3)/2} |V|^{(p-5)/2}.$$

Further setting

(4.10)
$$\begin{cases} L_{11}(I-L_{11})-V=R \\ L_{11}(I-L_{11})=UU' \end{cases}$$

where U is a lower triangular matrix and R = UFU' we find that the density of the matrix F is independent of L and is given by

(4.11)
$$f(F) = K |F|^{(n-p-8)/2} |I - F|^{(p-5)/2} .$$

We further note that $A_1 = |F|$, $A_3 = f_{11}$ where f_{11} is the first element of F. Proceeding on similar lines as in (4.3) and (4.4) and setting $x_{22} = f_{22} - f_{12}^2/f_{12}$ and $f_{12} = (1 - x_{22})^{1/2} (1 - f_{11})^{1/2} f_{11}^{1/2} x_{12}$ the joint density of f_{12} , x_{22} and x_{12} can be expressed as

$$\begin{split} f(f_{11},\,x_{22},\,x_{12}) = & K f_{11}^{(n-p-1)/2} (1-f_{11})^{(p-4)/2} x_{22}^{(n-p-3)/2} \\ & \cdot (1-x_{22})^{(p-4)/2} (1-x_{12})^{(p-5)/2} \; . \end{split}$$

It follows from (4.12) that beta densities of $f_{11} = \Lambda_3$, $x_{22} = \Lambda_4$ are independent. This result agrees with the one given by Radcliffe ([7], p. 740).

DALHOUSIE UNIVERSITY, HALIFAX, NOVA SCOTIA CANADA ST. MARY'S UNIVERSITY, HALIFAX, NOVA SCOTIA CANADA

REFERENCES

- Anderson, T. W. (1958). An Introduction to Multivariate Statistical Analysis, Wiley, New York.
- [2] Bartlett, M. S. (1951). The goodness of fit of a single hypothetical discriminant function in the case of several variables, Ann. Eugen., 16, 199-214.
- [3] Deemer, W. L. and Olkin, I. (1951). The Jacobian of certain matrix transformations useful in multivariate analysis, Biom., 38, 345-367.
- [4] Kabe, D. G. (1968). On the distribution of direction and collinearity factors in discriminant analysis, Ann. Math. Statist., 39, 855-888.
- [5] Kshirsagar, A. M. (1961). The noncentral multivariate beta distribution, Ann. Math. Statist., 32, 104-111.
- [6] Kshirsagar, A. M. (1964). Distribution of direction and collinearity factors in discriminant analysis, Proc. Camb. Phil. Soc., 60, 217-225.
- [7] Radcliffe, J. (1968). The distribution of certain factors occurring in discriminant analysis, *Proc. Camb. Phil. Soc.*, **64**, 731-740.