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1. Summary

Consider a general incomplete two-response design. Let S, S, and
Si: be possible sets of units on which respectively, only response V;, only
response V,, and both responses V, and V,, are to be measured. Further
suppose that under each of the two sets (S,US;) and (S,US,), a cyclic
PBIB type of block-treatment design is going to be used. Then under
a suitable cost restriction, and under the trace criterion for the com-
parison of designs, it is shown that the optimal two-response design
will be such that at least one (and in most cases, only one) of the sets
S, and S, would be empty. Also, methods are given to obtain the opti-
mal design itself.

2. Introduction

Consider an experimental situation with p responses (Vi,---, Vo) v
treatments (z;,---,7,) and a set S* of experimental units, where the
multiresponse design is possibly incomplete in the sense that all responses
may not necessarily be measured on each experimental unit. Let S*(s,
-++, 1) denote the subset of S* on each element of which the responses
Vi,-++, Vi, (and these alone) are measured. Thus UX = {S*(i,, -, %,)|
r € (i, -+, %)} is the set of all units on which V, is measured (alone or
possibly with other responses). In a previous paper (Srivastava and
McDonald [9]), heretofore, called paper I, the case where the sets S*(1,,
-+, %) are divided into randomized blocks (of v units each) was studied.
However, if v is large, or if respect to any response (say V,) there
is a great deal of heterogeneity present in the experimental material,
then as in the classical (univariate) experimental design theory, it would
be advisable to use incomplete block designs rather than randomized
blocks.

In paper I, it was shown that for the randomized block case, the
hierarchical multiresponse (HM) (i.e. those where U*2D- .. 2Uy) designs
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are optimum in the general class of incomplete multiresponse designs,
and a method of finding the optimal design was developed. In this paper,
we develop a similar theory for the case when the designs defined on
the set S*(i,,---,4,) are cyclic PBIB designs of a very general type.
This system of PBIB designs is very flexible in the sense that designs
exist (in the combinatorial sense) for any given block size we wish. Also
the number of replications of any treatment equals the block size, and
therefore is not too large (unlike the BIB design in general). Of course,
one could think of developing a theory of optimal multiresponse designs,
where the designs on the sets S*(3,,- - -, ,) are different from randomized
block or cyclic PBIB designs. But this seems to necessarily involve com-
plex combinatorial existential problems which we cannot discuss here for
lack of space. Indeed, when p>2, even the cyclic PBIB gives rise to
such difficulties, since the general incomplete multiresponse (GIM) design
loses its structural balance. This paper is therefore restricted to p=2.
Although the basic problem here is similar to that in paper I, the de-
velopment is quite different. Here, the complexity arises not because
of large p, but because the basic design used, viz. cyclic PBIB is mathe-
matically more complex than the randomized blocks.

The notation is similar to that in paper I. Thus, under any design
D, ¢(D) denotes the associated ‘cost’. A rival design D* is at least as
good as D, if ¢(D*)=¢(D) and QD*)<Q(D); D* is ‘better’ if one of
the inequalities is strict. Here

2.1) Q(D)=trace [Var (Pz%)],

where t*=(z,- -+, 7}), £/=(t1,"**, Tw), 7,; denotes the true effect of z,
on V,, ¥ is the best linear unbiased estimate of z* under the design,
and P is a p(v—1)Xpv matrix given by

(2'2) - P=diag(P1’Ph'"7Pp)9

where, for every r, P,(v—1Xv) is an orthonormal matrix for which the
sum of the elements in every row in zero.

The designs discussed in this paper should be useful in situations
where the heterogeneity in the experimental material and/or the num-
ber of treatments is large, and where the measuring costs for the two
responses (or the associated variances) differ appreciably from one an-
other.

3. Determination of Q for certain response-wise incomplete cyclic
PBIB designs

Consider the following cyclic PBIB design with » blocks and v treat-
ments (zy,--, 7, say).
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Ij1]2(8] .- |(@=1) »
M|2|38|4|---| v | 1
3.1) Blocks 1|3 [4|5]|--- 1 2

Suppose that two responses, V, and V;, are under study. Measure only
V. on the first %k, columns, both V, and V, on the next k columns and
finally only V, on the next k, columns, where 2<k,+k<v, (r=1, 2), and
ki+k+k,<v. Let D=D(k,,k, k;) denote the above “response-wise in-
complete” and “treatment-wise incomplete” design. The first (k,+k)
columns of (3.1) constitute a PBIB design (say D,) for response V,, and
the last (k+k,) columns form a PBIB design D, for response V,. Thus
D, (r=1, 2) provides (k+k,) (=p,, say) replications of the set of v treat-
ments. Assume that for both D, and D,, the jth associates of an ele-
ment z € {1,---,v} are £+7 (modv). For odd v, there are ((v—1)/2+1)
associate classes with, respectively, n,=1, n,=-++ =n,_p,=2 elements;
and for v even, there are (v/2+1) classes with, respectively, n,=1, n,=
o =Nepon=2, N,,=1 elements. Further, if any two treatments are
Jth associates under the design D,, they occur together in exactly 2,
blocks, where

p,—min (3, p,); er=1,--+,(v—-1)/2,
3.2) A, ,={ .
e-—min (7, v—p,); o,=W+1)/2,-++,v;
if v is odd; and
pr—min (7, r); or=1,-++,(v/2)—1;
3.3) z,,:{ o
e.—min(j,v—p,);  p,=(v/2), -+, v;

if v is even.

Consider now response V, ignoring V,. The estimate #, of =, under
D, is given by the reduced normal equations C,z,=@,, where (following
the notation of Kempthorne ([1], p. 80), @, (vx1) is the vector of ad-
justed yields, and C; (vXv) is a symmetric matrix of rank v—1 each
row of which sums to zero. Also the (a, 8) element (@, 8=1,---, %) of
Ci=((Cisp)) is given by

(3°4) Claazpl_l ’ Claﬁ= _(pl—l)zlaﬁ (a:#ﬂ; «a, ‘B=17 27' c 'U) y

where 2,.,=2;; if |a—p|=7 (mod v). The matrix C, (vXv) corresponding
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to V; is similarly defined with the suffix 1 replaced by 2. Now, from
(2.1), we have

(3.5) Q(D)=tr (Var (P, #,))+tr (Var (P;7,))

=gy, tr (P,C]P{)+ 0y tr (P,CIP}),
where g,, (r=1, 2) is the variance (for response V,) of the observation
on any experimental unit, and where C!=C*C,C}, C} being a conditional

inverse of C, (i.e. C¥ is any symmetrical matrix such that C,C}C,=C,).
The following lemma can be easily established.

LEMMA 3.1. If 8,, (r=1, 2) denotes the jth largest root of C,, then

3.6) tr (PCIP) =303,
and

v=—1 v—1
(3.7) Q(D)zﬂ'" anl‘*'(fnggo;f .

The next step in the evaluation of Q(D) is to find the 6, and 6,,.
Consider C,, which is a circulant matrix in view of (3.4). Hence the
roots 6,; (§=1,---,v) of C, are given by

(o —1)—pr [Au(w; +wi )+ -+

+ Ao (WGP WA, v odd,
(38 0,= 1 ;
(o.—1)—pr ' [An(w; +wi™)+- - -
+11.(.;/2-1)(’“)5”/2—1)+w§m+l))+2|,o/2’w3/2] ’ v even;

where w, (j=1,---,v) denotes the v distinct vth roots of unity. Four
cases arise. In case I, assume that v is odd and 0=<p,<(v—1)/2. Here
we have

Pl_l’ l=1""’('v_.01)
(3.9) Ay =

20—, l=(v—p,+1),- -+, (v—1)/2,
and
(3.10) wi+wi" =2 cos (2xjl/v) ,

(j=1,' e, v—1; I=1,---, (v—l)/2) .

Thus, for j=1,.--,v—1, we have

(3.11) el,=(pl—1>—zp:l[ 5¥ (=) cos (a)— 31 (@p—) cos (ta,)] ;

=v—p;

where a,=2zj/v. The following identities are well known:
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3.12 2 _ cos ((n+1)a/2) sin (na/2) ’
(3.12) 2 cosla sin (6/2)
3.13 = leosla=T sin ((2n—1)6/2) _ 1—cos (n4) )
(8.13) 21 coe 2sin (9)2) dsin’ (0)2)
Using these identities, (8.11) simplifies to (for j=1,--.,v—1):
_ -1 2 1—cos (o2y) — :
(3.14) 0|j Pl [pl l—cos (a’) ] f(pl’ .7) ’ Sa'Y'

For the other cases (i.e., v odd and p,>(v—1)/2, and also v even), it
can be checked that the above procedure leads to equation (3.14) again,
as the formula for the (v—1) nonzero roots of C,. By the interchange
of p, and p, we obtain the (v—1) nonzero roots 8;, of C,. Thus, if f(z, 7)
is defined by (3.14) by replacing o, by x (=2, 3,---, v), then (8.1) gives

(3.15) AD)=0u6(o) +ouGe)
where
(3.16) G@)=5 [ I

For facility in obtaining the optimum design (see Sec. 3), the func-
tion G(x), (#=1,2,3,---,10,12,14,...,v), (»=1,2,8,---,18,21, 24,...,
45) is tabulated in Appendix I. For other values of v and z in this
range, a good approximation can be obtained using a 4-point interpola-
tion formula.

4. Optimality of the HM designs

Assume now that the ‘cost’ associated with the GIM design D,=
D(k,, k, k;) has the structure

(4.1) H(Do)=goler+E+ks)+ (ke + k) + pole + K)

where ¢, is the overhead cost of including one column of v experimental
units in the experiment and ¢,, (r=1, 2), is the additional cost of measur-
ing response V, on the experimental units of one column. We proceed
to compare D, with the hierarchical design D*=D(k,—k,, k+k,, 0) where
we assume (without loss of generality) that k,<k,. Recalling from (3.15)
the value of Q(D) for any design D, we notice that Q(D,)=Q(D*). Since
H(Dy) —p(D*)= ok, 20, it is clear that D* is at least as good as D,. This
shows that the subclass of HM designs is complete within the class of
GIM designs. The main problem now is to find the optimal HM design
D* for which ¢(D*)=¢’ (a fixed positive number), and Q(D¥) is a mini-
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mum. An investigation into this problem involves the following result
concerning matrices, which is also of interest in the general theory of
experimental designs.

THEOREM 4.1. Let H, and H, be (nXn) symmetric matrices, which
are respectively positive and non-negative definite. Also, for any matric
B given below, let ¢(B) be defined by

ww  n-[B . ww-nnn.
where B is (nXn), B, is (n—m)X(n—m), where n>m, and B, (mXm)
18 nonsingular. Let

(4-3) $u(Hy, Hy)=[¢(H)]"' —[¢p(H+ H)]™",
$u(H,, Hy)=[4(H)]1"' —2[¢p(H,+ H,)]™' +[¢(Hi +2Hy)] ™ .

Then ¢,(H,, H,) and ¢,(H,, H;) are positive semidefinite.

PrOOF. Define ¢f=H;'—(H,+H,)™" and ¢}=H'—2(H,+H)"'+
(H,+2H,)™. Since, ¢(H,, H;) is a principal submatrix of ¢} (1=1, 2),
the result will be proved if the ¢* are both p.s.d. Now, there exists a
nonsingular matrix T such that H,=TE,T', where E; are diagonal ma-
trices with non-negative elements, and E, is nonsingular. Hence, putt-
ing 4,=E'—(E,+E,)™, and 4,=E'—2(E\+E;)"'+(E,+2E,)™", we have
¢¥=T""'4,T-*. Thus it is enough to show that the 4; are p.s.d. How-
ever, if e, and 4§, respectively represent the jth diagonal element of E,
and 4, for (=1, 2), then d,,=¢;'—(e,;+e5)", 0 2=e5'—2(e;1+€;) "+ (e +
2e,,)"'. Thus §,,=0, 6,,=0, and the proof is completed.

Consider now one response, and three disjoint sets U, (i=1, 2, 3) of
experimental units. Here all units of all sets are assumed mutually in-
dependent, and any observation on any unit has the same variance o’
Let U, give rise to a vector of (independent) observations y;, and let

(4.4) E(y)=A* +A,5*, E(g)= E(lh) =A™ +A4ﬂ* ’

where z* and B8* are unknown parameters, which without any essential
loss of generality can be assumed to be estimable from y,. Let UX=
U,, Ux=U+U,, U¥=U,+U,+U,; where + denotes union. Let #¥ de-
note the best linear unbiased estimate of z* obtained from the observa-
tions on the units in U¥* (i=1, 2,8). Then W,, the variance-matrix of
£¥ is given by W,=[¢(H*)]"!, where H*=H,, H}*=H,+H,, and H¥*=
H,+2H,, and where '

_[AlA, AlA, _[AiA, AjA,
(4.5) H‘_[A;AI A;A,]’ H’“[A;A, A:A,]'
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In this context, Theorem 4.1 tells us that the matrices ¢,, where ¢,=
(W,—W;) and ¢,=[(W,—W;)—(W,—W,)] are both positive definite. Now
W,—W,, and (W,—W,) can be interpreted as the “decrease in the var-
iance” due to the addition of U, or U;. (Note that U, and U; are, in
view of (4.4), ‘equivalent’ sets of units.) Thus ¢, being p.s.d. means
“variance decreases” by the addition of U;, and ¢, p.s.d. implies that
‘variance’ has the ‘convexity property’ in the generalized sense that
the ‘decrease in variance’ is ‘more’ at the first addition of U;, than
at the next addition of the equivalent set of units Uj.

Notice that ¢, being p.s.d. implies tr W;=tr W,. Recalling the de-
finition of G(x) from (3.16), this gives

(4.6) G(zx)=G(x+1), z=2,8,---,v—1.

Again, suppose in the above discussion, we let the first & columns
of (3.1) correspond to U;, the (z+1)th column to U,, and the (x+2)th
column to a new set U/. Notice that U;* would then involve the first
(x+1) columns, and U;* will be U} with the (z+1)th column occuring
twice. Let U}* correspond to the first (x+2) columns. Assume there
is only one response. Let I} and I; respectively be the covariance ma-
trix Var (P,#,) based on the designs U* and U}*. Then (recall (3.14))
[f(x+2, 5)]! is the jth root of I;. Also, correspondingly the jth root
of I is [f*(x+2), )] where

4.7 fx+2, J)=(z+2)—(2+2)"'4,
o, sin[(x+1/2)a,] , 1—cos [(z+1)a,]
(4.8) = (2;/2) mu 2 sin? (a,/2) j

with a,=2rj/v. A proof of this is out of place here, and would be found
in McDonald [3]. Thus it is easily checked that [f(z+2, H]'<S[f*(x+
2, /)17, for all permissible j. This shows that our method of using a
new column is better than repeating the same column more than once.

Furthermore, we now show that Uj** (like Uj*) also has a kind of
convexity property.

THEOREM 4.2. Let h(z, j)=(1—cos a,)f(z, ), where a,=2rjlv; j=
1,2,---,v—1; and £=2,3,---,v. Then for all permissible x and j, we
have

4.9  [k=, DI'—[k(=z+1, N 2@ +1, HIT—[=z+2, H].

ProOF. Let {(z)=h(z+2, j)[h(z+1, 5)—h(z, D], L(x)=h(z, j)[h(x+
2, )—h(x+1, 7)], and Zy(x)=C(x)—Ly(x). Then it is enough to show that
{i(2)=0. Let cosa;=c, sina;=s, cosa,(x+1)=c;, and sina,(x+1)=s;
and ,(x)=(1/2)x(x+1)Z(x). Then it can be checked that
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(4.10)  C@)=(1—c)A—c)r*(x+2)(x+1)"' +(1+e) (1—c)z(z+2)
+@—e)+(1—c)+(1—ce)(2—c,—3c)
—3s8;(1—¢c)(x+1)—ss,(1—c)(x+1)".

Note that ,(0)=0. Thus it is enough to show that {y(x)=0, where
L(2)=C(x+1)—L(x), for 2=0,---,v—38. Putting e,=(z+1)"(x+2)" we
find

(4.11)  G@)=A—c)1—c)[(2x+2)—c,]+ (1 +c) (1 —c)(2z+3)
+88,(1—e¢)e,—3ss,(1—c) .

We consider three cases. In case 1, assume ss,=0; then clearly {;(x)=0.
In case 2, assume 83,<0. The only negative term in {;(z) is ss,(1—c¢))e;.
Let

4.12) C(@)=(1—0c)"'(L—c))7'Cs()
=(2x+2—¢,)+(22+3)1+¢)(1—c)/(1—cy)
—38[ss,/(1—c,)] +¢.88/(1—c) .

Now |e,88,/(1—c)|<Z|e, sin 2(x+1)y,(sin r,)~!|, where y,==j/v. Since |(sin
uf)(sin §)'|<u when u is positive, we have |e¢.88(1—c)7'|Ze2(x+1).
Thus {y(x) =(2x+2) —e,—e(22+2)>0. In the third and final case, assume
88,>0. Consider

(4.13) L) =22 +3)(1+e)(1—c)(1—c;) ' —3ss,(1—e) "
=2x+3)(1—c)u’—3su ,

where u=cot (x+1)zj/v. Consider {(x) as a function of » and ecall it
C*(u). Differentiating {¥(u) with respect to %, we find that (¥ (u)=
2(2x+3)(1 —c)u—33=0 implies that u=wu, (say)=3s/2(2x+3)(1—c). Sec-
ondly, £}'(u))=2(22+3)(1—¢)=0, so the minimum value of {}(u), under
variation of u, is {¥(u,)= —9s%/4(2x+3)(1—c)=[—9 cos’ 7,]/[2(22 +3)]. Now
L) = (22 +2) —e,—9 cos? 7,/2(2¢ +8) = (2x +2) —e,—9/2(x+3). Thus {i(x)=0
for £x=0,1,2,...,v. This completes the proof.

We now return to the problem of the determination of the optimum
HM design assuming that the variances o, and g are known (or good
estimates are available) and that ¢,, ¢, ¢, are given. The problem is to
find the design D*=D(k,, k, k,) which minimizes @, defined in equation
(8.15), subject to the linear constraints 2<Fk,+k, (r=1,2), ki+k+k=v
and ¢(D¥)<¢', where ¢’ is the total capital available for conducting the
experiment. Since the subclass of HM designs is complete the procedure
will be to evaluate Q for the optimum HM design of the type D(k,, k, 0)
and compare it with Q evaluated for the optimum design of the type
D(0, k, k;). In what follows, we let
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(4.14) rnn=¢ot+¢, re=¢o+¢s, re=do+ o1+,

and denote by [z], the largest integer less than or equal to z. Also,
to avoid unessential complications, we make the (mild) assumption that
N=¢'[r;; is an integer.

Two cases arise. Under case I, assume k,=0. Now k=<N. Let
N—k=m, then k,=m+[m¢,/y,]. For any given m, denote the corre-
sponding HM design D by D,,. The problem is to find the optimum
value of m. Since the optimum HM design must be connected with re-
spect to response V,, we must have p,=k=2. Thus the admissible
values of m are m=0,1,-.-., N—2.

Now

(4.15) Q(Dy,m)=0uG(N +[mes/ri])+ 06:G(N —m) .
Thus (D, ,)SQ(D;,ms1), if and only if

(4.16) 2 > G(N +[me,/ri]) =GN +[(m +1)¢s/11]) =B,
o G(N—(m+1))—G(N —m) ™

Now consider subcase Ia where ¢y/r;=1. Here [(m+1)gy/ri]—[mds/r]=1.
Hence by (4.6) and (4.9), 8., is a monotone decreasing function of m and

Hence if oy/0,,=p,,0, then D, (=D(0, N, 0) is optimum. If o,/ <B;, then
Dy, n,= D(my+[muds/7:1], N—m,, 0) is optimum where m, is the least value
of m for which on/o,=Bim. If owloy<Biy_s then D, y_, is optimum. For
subcase Ib, where ¢,/y;<1 the procedure is more complicated since B, .
is no longer a monotone function of m. However, [(m+1)gy/r]—[mey/
71J=1. Thus when [(m+1)g,/r]=[m¢y/1ri], we have aylo,;> B »=0, and
D, , is better than D, ,,,. The procedure is to find the set M of values
of m=0,1,---, N—2 such that [(m+1)¢:/ri]—[m¢s/ri]=1. Let M={m,,
-+, m;} where my, <m;, < -« <my,. By (4.6) and (4.9) ﬁ,,milgﬂl,mizg R
‘B""‘iz' If "22/‘7"2191"%, or M is empty, then D,, is optimum. If as/o,; <
Bim o then find the smallest value of m € M, (say) m,,, such that oy/e;,=
ﬁl""ih' If oypflon< ﬁl-mt, then set h—1=I in the following. Evaluate @ for
the designs D, , corresponding to the values of m equal to (m,,_ +1),
(m,_,+1),---, (m,+1) and 0 and select the one for which @ is a mini-

mum. Clearly, in practice this number (h—1) should be expected to be
small. Hence using Appendix I, the evaluation of @ and their compari-
son would be quite easy.

For case II, assume k,=0. Subcases IIa (¢,/r;=1) and b (¢/r:<1)
arise as for case I. Exactly the same results as above, with the sub-

(say).
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scripts 1 and 2 interchanged, are applicable.

The procedure that suggests itself is to obtain the best design from
each of cases I and II and compare Q calculated for each. Usually this
procedure can be shortened.

If ¢,/ri<2 and ¢/1,<2 (as will be the case in most applications),
then by (4.6) and (4.9), all of the f's in cases I and II are less than 1.
Thus if oy/oy=1, the optimum design is D*=D(0, N, 0). If oyploy<1,
then the optimum design will come from case I, while if o,/0,<1 the
optimum design will come from case II.

If ¢o/r,=2, but B, <1, the same remarks as in the preceding para-
graph are applicable. However if §,,>1, we must compare the optimum
designs from each of cases I and II. A similar remark as above with
the subscripts 1 and 2 interchanged is also applicable.

Example. We now illustrate the preceding theory using some arti-
ficial data. Suppose that v=40 varieties of wheat are to be compared
with respect to two responses: V,=total yield of grain in lbs. per acre
and V,=total yield, in terms of protein, in lbs. per acre. Assume that
it is known from past experience that ¢,=382,400, 0,=3,600, ¢=40, ¢,
=600, and ¢=800. Further assume that ¢'=7,200, so that if the SM
design is used we will have N=¢'/y,=5 replications of each variety.
Now ¢y/r,=600/840<2, ¢/r,=40/1400<2, and oy/o,=.11<1 so that the
optimum design will come from case I (i.e., k,=0). Also since ¢/n<1
we are under subcase Ib. The admissible values of m such that [(m+1)
600/840] —[m600/840]=1 are m, =1 and m,=2. From (4.16) and using
Appendix I, we get B,,=.157 and B,,=.017. Thus (8;,,=.157)>(on/ou=
.11)>(B,,,=.017), and we evaluate Q corresponding to m=m,+1=2 and
m=0. Using (4.15) and Appendix I, we have Q(D,,)=674,100 and Q(D,,)
=664,815. Thus the optimum design is D,,=D(3, 3, 0).

Appendix |

Values of the Function G(x), (z=1, 2,---, 10,12, 14,..-, V).

V=3 G(2)= 1.333 G(3)= .667

V=4 G(2= 2.500 G(3)= 1.125 G(4)= .750

V=5 G(2)= 4.000 G(3)= 1.636 G(4)= 1.067 G( 5= .800

V=6 G(2)= 5.833 G(3)= 2.242 G(4)= 1.39 G(5)= 1.042 G( 6)= .833
V=7 G(2= 8.000 G(3)= 2.927 G(4)= 1.761 G( 5= 1.289 G( 6)= 1.029

G( 7= .857
V=8 G(2)= 10.500 G( 3)= 3.696 G( 4)= 2.162 G( 5)= 1.549 G( 6)= 1.227

G(7)= 1.021 G(8) .875
V=9 G(2)= 13.333 G( 3)= 4.549 G( 4)= 2.594 G( 5)= 1.827 G( 6)= 1.431
G(7)= 1.186 G( 8)= 1.016 G(9)= .889



V=33

V=36
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G( 2)= 16.500
G(7)= 1.354
G( 2)= 20.000
G(7)= 1.527
G( 2)= 23.833
G(7)= 1.706
G( 2)= 28.000
G(7)= 1.892
G( 2)= 32.500
G(T)= 2.084
G14)= .929
G( 2)= 37.333
G(T)= 2.281
G(4)= 1.005
G( 2)= 42.500
G(7)= 2.485
G(14)= 1.082
G( 2)= 48.000
G(7)= 2.694
G(14)= 1.159
G( 2)= 53.833
G(7)= 2.909
G(4)= 1.236
G( 2)= 73.333
G(T)= 3.591
G(14)= 1.470
G( 2)= 95.833
G(T)= 4.327
G4)= 1.710
G(24)= .958
G( 2)=121.333
G(7)= 5.116
G(14)= 1.956
G(24)= 1.089
G( 2)=149.833
G(7)= 5.958
G4)= 2.210
G(24)= 1.219
G( 2)=181.333
G(7)= 6.854
G(14)= 2.470
G(24)= 1.350
G( 2)=215.833
G( )= 7.804
G(4)= 2.737
G(24)= 1.482
G(34)= 1.031
G( 2)=253.333
G(7)= 8.807
G(14)= 3.010
G(24)= 1.615
G(34)= 1.122

G(3)=5
G(8)=1
G( 3)= 6.
G(8)=1
G(3)=7
G(8)=1

G( 3)=
G( 8)=

G( 3)=10.062
G( 8)= 1.751

G( 3)=11.415
G( 8)= 1.910

G( 3)=12.851
G( 8)= 2.072
G(16)= .938

G( 3)=14.370
G( 8)= 2.239
G(16)= 1.004

G( 3)=15.973
G( 8)= 2.409
G(16)= 1.070

G( 3)=21.281
G( 8)= 2.944
G(16)= 1.271

G( 3)=27.339
G( 8)= 3.514
G(16)= 1.473

G( 3)=34.147
G( 8)= 4.120
G(16)= 1.680
G(26)= 1.001

G( 3)=41.705
G( 8)= 4.762
G(16)= 1.892
G(26)= 1.121

G( 3)=50.013
G( 8)= 5.440
G(16)= 2.108
G(26)= 1.242

G( 3)=59.071
G( 8)= 6.153
G(16)= 2.328
G(26)= 1.362
G(36)= .972

G( 3)=68.879
G( 8)= 6.902
G(16)= 2.553
G(26)= 1.484
G(36)= 1.058

G( 9=
G( 9)=
G( 9=
G( 9)=
G( )=
G( 9)=
G( 4=
G( 9)=
G( 4=
G( 9)=

3.059
1.013

3.558
1.137

4.090
1.262

4.656
1.389

5.255
1.518

G( )=
G( 9)=

-

887
.650

G( 4)=
G( 9)=

6.553
1.785

G( 4=
G( 9)=

7.252
1.923

G( 4)= 7.984
G( 9)= 2.064

G18)= .94

G( 4)=10.381
G( 9)= 2.503
G(18)= 1.121

G( 4)=13.078
G( 9)= 2.966
G(18)= 1.298

G( 4)=16.074
G( 9)= 3.455
G(18)= 1.476

G( 4)=19.371
G( 9)= 3.969
G(18)= 1.658
G(28)= 1.038

G( 4)=22.968
G( 9)= 4.508
G(18)= 1.843
G(28)= 1.149

G( 4)=26.865
G( 9)= 5.072
G(18)= 2.031
G(28)= 1.261

G( 4)=31.062
G( 9)= 5.661
G(18)= 2.222
G(28)= 1.372
G(38)= 1.001

G( 5)= 2.123

G(10)=
G( 5)=
G(10)=
G( 5)=
G(10)=
G( 5)=
G(10)=
G( 5)=
G(10)=

G( 5)= 3.
G(10)= 1

G( 5)= 4.
G(10)= 1

G( 5)=
G(10)=

5.083
1.811

G( 5)=
G(10)=

6.468
2.183
1.003

8.004
2.573
1.160

G( 5)=
G(10)=
G(20)=

G( 5)=
G(10)=
G(20)=

9.689
2.982

G( 5)=
G(10)=
G(20)=

G( 5)=11.524 G(

G(10)= 3.409
G(20)= 1.479
G(30)= .967

G( 5)=13.510
G(10)= 3.853
G(20)= 1.641
G(30)= 1.070

G( 5)=15.645
G(10)= 4.316
G(20)= 1.805
G(30)= 1.174

G( 5)=17.930
G(10)= 4.798
G(20)= 1.972
G(30)= 1.277

1.319 G

= 1.643
= 1.866

= 2.099
917

= 2.342
= 1.007

= 2.593
= 1.098

= 3.126
= 1.280

= 3.406
= 1.372

G(32)= 1:098

G( 6)=11.985
G(12)= 3.688
G(22)= 1.775
G(32)= 1.195

517
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V=42 G(2)=293.833 G( 3)=79.437 G( 4)=35.558 G( 5)=20.365 G( 6)=13.512

G(T)= 9.864 G( 8)= 7.687 G( 9)= 6.274 G(10)= 5.297 G(12)= 4.048
G(14)= 3.200 G(16)= 2.782 G(18)= 2.417 G(20)= 2.141 G(22)= 1.925
G(24)= 1.750 G(26)= 1.606 G(28)= 1.485 G(30)= 1.381 G(32)= 1.292
G(34)= 1.213 G(36)= 1.144 G(38)= 1.082 G(40)= 1.026 G(42)= .976

V=45 G(2)=337.333 G( 3)=90.745 G( 4)=40.355 G( 5)=22.951 G( 6)=15.124

G( 7)= 10.974 G( 8)= 8.508 G( 9)= 6.913 G(10)= 5.815 G(12)= 4.418
G(14)= 3.577 G(16)= 3.015 G(18)= 2.614 G(20)= 2.312 G(22)= 2.076
G(24)= 1.886 G(26)= 1.729 G(28)= 1.598 G(30)= 1.486 G(32)= 1.389
G(34)= 1.304 G(36)= 1.229 G(38)= 1.163 G(40)= 1.103 G(42)= 1.049
G(44)= 1.001
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