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1. Introduction

Suppose that there is a system consisting of m identical components.
If failure of a single component causes the system containing it to fail,
the failure distribution of the system may correspond to the distribution
of the least order statistic of a sample of size m from the failure dis-
tribution of components. On the other hand, if failure of all compo-
nents in a system causes the system to fail, the failure distribution of
the system may correspond to the distribution of the largest order sta-
tistic. It may, in such a case, be required to estimate some character-
istics of failure distributions of these systems based on a sample drawn
from the failure distribution of components.

This problem will be formulated as follows. Let F(x) be a con-
tinuous cumulative distribution function, let X, , be the kth least order
statistic of a sample of size m from F(x) (we assume, throughout this
paper, that m<mn) and let F,, be the cdf of X,,. Estimate some
characteristics of F),, on the basis of a sample of size n from F.

On the other hand, it may be required in some cases including life
tests to estimate some characteristics of a population based on censored
samples. We considered this problem in [1]. The nonparametric esti-
mates of population means proposed there were, however, not effective
enough to use without uneasiness. Therefore we shall, in this paper,
consider the problems of estimation of population characteristics based
on censored samples and a random sample from the population. For
example, let X, X, Xo, Xoo, -+, Xu, Xio, X3, Xz, -+, X, be a random
sample from a population and X* (¢=1,2,---,1) the minimum of X
and X,,. Then the estimation is based on X* (i=1,2,.--,1) and X,
(7=1,2,---,m). In such a case it is necessary to consider the problem
formulated above.

In Section 2 unbiased estimates of E X,, ., Var X,, , etc., on the basis
of a sample from F, are given. The theory of U statistics will play
an important role there.
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In Section 3 we shall discuss the asymptotic properties of the esti-
mates, and in Section 4 the problem of estimation of the mean of F based
on both samples from F and F, ;.

2. Estimators

Let F(x) be a continuous cdf with density function f(x), and F, «(x)
the cdf of the kth least order statistic of a sample of size m from F'(x).
Consider the problem of estimating a parameter 6(F,,) which is a
characteristic of F,,, based on a sample (X, X;,---, X,) of size n from
F(x).

Denote by 2 a class of absolutely continuous distributions and by
2., the class of all F,, each of which corresponds to a cdf F' of Q.
Now, we assume that &(F, ,) is estimable of degree h with respect to
Q,. (cf. Fraser [2], p. 136); that is, there exists a statistic &(y, ¥,
«++, %, such that

Bpp a6V, Yoo, Y ={" (7t ) [T dFustw)
=0(F.)

for all F, ;€ 2,:. Note that (Y;,Y;,---,Y;) is a sample of size b from
F,.. By F,, we also represent the mapping which transforms F' into
F,.. Then the parameter 6(F,,) can be considered as defined on £.
Denote by 6, (F) the parameter &(F,,) when we consider it as one
defined on 2. We define a function w,, (2, 2s,- -+, Z,) by

Wi (X1, Tg,++ +, Tp)=the kth least value of {x,;¢=1,2,-.-, m}.

Since the distribution of w, (X, X;,--+, X,) and that of Y; are identical,
it is easily seen that the parameter 4, ,(F') is estimable with respect to
2 and has degree less than or equal to mh; that is,

El= {t(wm,k(Xll 1%y le)9 tt wm,k(XM »* "%y Xhm))}

for all Fe®, where {X,;j=1,--+,m,i=1,---,h} is a random sample
of size mh from F. We assume that n=mh. For a sample (X;,---, X,)
of size n from F' we define a U statistic

(1) UX, X, Xo)
=§ t(’wm,x()(m tt X-tm), e ’wm,k(Xt,,,(h_l)+1) Yy th))/anh ’
where the summation P is over all ,P,, permutations (3, - -, tns) of mh

integers chosen from (1, 2,:--, n).
Let X, (1=1,2,---,n) be the order statistics of {X;;i1=1,---,n}.
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In the case when h=1 the expression of the U statistic given by (1)
becomes

(2) U(*er"'v Xn)zg t(wm,k()(tl""! Xim))/an
=2 t(wm,k(Xily f Xltm))/ncm

=57 (2D (h)axonc..,

i=k

where the summation C is over all ,C, combinations (3,,::-, %.) of m
integers from (1,-.-,n). The expression (2) follows from the fact that
the number of combinations which satisfy W o( Xy -0y Xy )=Xy 18

m—k
ther reduce the expression (2) to

("I;:i)(n—z) In the special cases when k=1 and k=m, we can fur-
(3) UK X)=" 31 (w2 1)uxo) /()
or

U, X)=33 (4 Z1)Xa) /()

Example 1. The U statistics based on a sample of size » from F
as estimates of the means of F,, and F},, are

respectively.

(4) Ux,,:--, n)”—(——ﬁt_ (n—1)Xw

and

(5) UX;y ey X =2 31 (i—1)Xeo
n(n—1) i=2

respectively.

Example 2. The U statistic based on a sample of size » from F
as an estimate of the value of F, .(x,)=p, say, is

U, X)=" 3 (121) (2 e Xe) / ()

_ é(ij)(:z:@/(,’f@) if Jizk
0 if Ji<k,

where .., is the indicator function of the set (—oo, 2] and J,=
max {t| X, <2} and Jy;=min {n—(m—k), J}.
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Next we consider the case h=2. From (1) we have
( 6 ) U(AXI’ ) Xn)"_‘z? t(wm,k()(ilr ) Xim)’ wm,k(-le+1, Tty X‘zm)) .

The number of permutations which satisfy wn«(X;, -+, X; )=X, and
wm,k(‘Xim.H’ Tty )(tzm) =)((/) is given by

() FHemy(imh) (B ) (710 (rim o) (-2 G0 -s)

m—k—s
where d=min {j—1—1, m—k}. Note that in this expression (g’) means
0 unless a=b=0. Denote the value of (7) by a,;. Then we have

(8 ) U(le tt Xn)= Z zatjt(X(() ’ X(j))/(nPZm) .

1sisjsn

Example 3. In the cases k=m and k=1 we have
P 1\ /i1
a,-,=(m!)’<;t_1) (J m—1m>

o=y () (")

respectively, and therefore

and

UK,y X)=200 5y (S-D(I-1-MYyx,, X,)
2Pom  msi<ssn \m—1/\ m—1

and

U X)=2RL (P, X
wPom  15t<iEa—m—-0 \m—1 m—1

respectively. For example, the U statistic corresponding to an estimate
of the variance of F}, is

oo = 8 7 y — (X(i)__X(j))2
UKoy )= B (=1)(j=8)Fez Rl

The variances of the U statistics given by (2) may be calculated by
using the formula (5.6) in Chapter 6 of [2] or by

VarU
="57E () (R (21 (R ) cov o), #XNIGCY

i=k I=k
Example 4. Let m=k=2 and f(x)=Xy,(x). In this case it is known
that

Cov (X, X, —_n—g+1) for 1<j.
(X, Xip) m+1)'n+2) J
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Thus the variance of the U statistic in Example 1 is given by

VarU= {L}z{z 2(i—1)(j—1) (n—j+1)

n(n—1)) (i< (n+1)(n+2)
. 1w 2in—i+1)
+3 -1 (n+1)’(n+2)}
_ 4n-3
" 45n(n—1)

Denote the variance of F, , by o¢h.. Since ¢3,=1/18, the variance of
the sample mean based on a sample of size » from Fj;;, is 1/18n. There-
fore, the asymptotic efficiency of the estimate based on a sample from
F to the sample mean based on a sample from F;, is 45/72=0.625.

3. Asymptotic equivalent estimates and asymptotic variances

The asymptotic variances of the U statistics defined by (2) may be
calculated by using the method described in Section 5 of Chapter 6 of [2];
the limiting distribution of /7% (U—8(F, ) is normal with mean 0 and vari-
ance m’¢;, where §;=CoV {t(wn, (X1, *, Xn)), t(Wn,o(Xi) X1 +y Xim-1))}-

It is easily seen that

Fo_ (%) if z<a,
P{wm,k(xls Xz: cr ety Xm)éx} ={
Fm—l,k-l(x) if x_z_ml ’

where F,_;.(x)=0 and F,_;(x)=1. Therefore the random variable
wm,k(xl! X2! Xs, Sty Xm) has the denSity fm—l,lc(m) for m<xl. a'nd fm-l,k—l(x)

for x, >« and the positive probability (7,;": %) FYx)(1—F(x))"* at
T=%. Let g;k(xl):E{wm,k(t(xl ’ XZ 2ty Xm))} . We have

0@) =" fanrs@)ta)dr | fusn@t(o)ia
+ t(xJ(",?Zi)F"“(m,)(1—F(x,))”“" .
We define a function J(u) by
(9) Jay=m (1w -t
By integration by parts we have
01X~ Elg*0)= [ JFE@ @F @)ds

o

—{; JFE @ a-Fa)d| /m.
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From this we obtain
(10) mC,=Var {gX(X)}
=2 | | IE@WF@)F@ (- Fo) @1 @sdy=2,  say.

<y
This expression can also be obtained in another way. Rewrite the U
statistic (2) as

1 -0 m—1 r—1 [k~1] n—1 (m—k]
(11) v=2"3% m( . 1) @ ()n_{)[m_f]) (Xw) ,

where a*! means a(a—1)(a—2)---(a—(b—1)), and define another statistic
U by

w0 e ) e,

Then it seems that these two statistics are asymptotically equivalent in

some sense. In fact, from (11) and (12) we have
~ m—1 k-1
U-U=3 > disUpn,

{=1 h=1

where d,,=0(1/n) as n— oo and

n—(l-h) — y — [h—1] —a\t-r]
U=s" 51 11 71) DR 4 )

n i=n (n—1)t-1
Therefore,
(13) E{yn(U-0)}-0
and
(14) Var {yn(U-U)}—0 as n—oo.
Since |

VaU=ynU+ym({U-U)

and yn(U—6(F,,)) is asymptotically normal with mean 0 and variance
m¢;, vu(U—6(F,,) is also asymptotically normal with mean 0 and
variance m(,. Using the function J(u) defined by (9) U is expressed as

(15) ﬁ:%é ( '>t(X“,).

Statistics with this form are treated in many papers (for example, see
[3], [4], [6]). When t(z)==x, the asymptotic variance (10) of /% U coin-
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cides with that of y7 U given by (1.2) of [3].

Ezample 5. Let m=k=2, t(x)=« and f(x)=e Xo.(*). Then we
have

Ju)=2u .

Therefore

=8 S S (1——e“)’(1—e"’)e‘”dxdy=-%—.

0<z<y

In this case o2,=5/4. Similarly for the case k=1 we have

Jw)=2(1—u),

=8 SS ee~4(1—¢~")dudy =~
3
o<z<y

and
a,=1/4.

4. Estimation of population means

We now consider the problem of estimating the mean p of F based
on a sample of size I from F' and a sample of size kA from F, ,.

Let X,,---, X, be independent random variables having the same
distribution F, and Y;,---, Y, independent random variables having the
same distribution F,,. We assume that (X;,---, X;) and (¥Y;,---, Y3)
are independent. Define

and

where U, , is the U statistic based on X;,---, X, as an estimate of the
mean of F,,. Denote the mean of F,,; by gtn.. Since E(X)=p, E(Y)=

m

tmiy E(X*¥)=mp—pn =3 ttm,,, and y:ﬁ tn..]m, the statistic
r=1 r=1
r#h

ﬂp=p2?+(1—p)(?—";n)—zi)

is an unbiased estimate of g for each p, 0<p<1l. We can write g, as
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(16) pr=pX (1 —p TEME T
=X+ (1-p) XVnr
m

We now consider the variance of #,. Noting that Y is independent
of X and U,,, we have from (16)

Var ji,=Var X+ (%E)Z(Var Y+VarU,,)

—20=D) ooy (%, U,.,) .
m

Since
13 -1 (1
W;Z“;U""”mjg{“)?w""(xl’ ’X‘)}
m
= S (Xt +X,)
)
_ 1 ‘(l—l)
m<l>421 m—1X’
m
=lsx
l izt
=X,
we have

(17  Varpg,=Var X+ (%)2 Var Y_&_z_p) ST Cov Unj» Uni)
m:  i=a
%k

1—p? VarU,, .

mz

Since each U, ; is a linear combination of the order statistics X (t=
1, 2,.--,1) with nonnegative coefficients and Cov (X, X»)=0, we have

Cov (Up,a) Un,s)20 .
Therefore, if
(18) (1—p)VarY<(1+4p) Var U, ,
then we have

Var p,<Var X .
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The value of p which minimizes Var g, is given by

Var Y—jzk Cov (Um,j’ Um,k)
VarY +Var U, } )

19) Max {0,

If Var Y is negligible in comparison with Var U, ,, then Var i, will be
minimized when p=0. In this case (17) becomes ‘

(20)  Var jio=Var X——ﬂ%{Var Uns+2 33 COV (Un,s, Un,)—Var 1?} .
*k

Example 6. Let m=2. Then (17) and (20) become

@1)  Varj,=Var X+1_Zl{(1—p) Var ¥—2 Cov (U1, Uss)

—(1+p) Var U,,}
and

(22)  Var ju=Var X+%{Var Y—2Cov (Uyy, Uys)—Var Uy} ,
respectively. Further we can write
(23) Var Zzo:-i-(Var Y+Varl,,),

where j#k.
(i) Let f(x)=2%q(x). By Example 4 we have

.1/ 1 , 4-3
Var =~
ar s 4(18h+45l(l—1)>
and
o 1
Var X=—1_ .
ar 121

If | and h are large then we have approximately

VarX . 30
Var 751 5
h

Thus

lim _varX _30 g5

e Varpg, 8

(ii) Let f(x)=e "X« (x). Further assume that ! is large. Then
we have from Example 5 for the case k=1
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~ _1/1 7
\ =_(__ —).
arm=r\m
Thus
VarX . 48
Var " 3L) v28
h
and
lim YorX _12 ;o143
r—w Var g,

For the case k=2 we have similarly

Var =1 (2 +--) -

‘ 4h ' 3l

Thus
Var X . 48
Verd - 15(L)+4

h

and
lim YorX _q9
h—oo Val‘ j o)
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