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Summary

In the present paper we give an evaluation of e-entropy of a one
dimensional diffusion process &(t), 0<t<T whose generator is

1 5 d? '
(1) (55—?1(96)&-%—2 (reR),

where the diffusion coefficient a(x)® satisfies
(2) la(x)—a(y)| = L|z—yl,
(3) 0<k<a(z)<K

for every ¢ and y (L, k and K are positive constants). We assume
£(0)=0 for simplicity of calculation. Then we can prove the following:

THEOREM. Under the conditions (2) and (3), e-entropy H.({¢(t)})
of &), 0<t<T 1is asymptotically evaluated for small ¢>0,

t 20" v Gy wf L2 Beon 32| vEE@y an] L.
eK 7t () & m* Lo ¢

Previously Kolmogorov stated in [3] without proof “ For a diffusion
process whose generator is given by (1) He({(t)}) is calculated by the
formula :

AN =21 Baewydul T +0(3) -0

under certain natural conditions ”. However, in consideration of Pin-
sker’s results for Gaussian processes [5] and our present theorem this
formula appears inaccurate. For the proof of the theorem we use the
well-known formula of e-entropy for finite dimensional random variables
(lemma 3).

*  f()<g(c) means ﬁ{;%gl.
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1. In this section we prepare several lemmas for a general stochastic
process &(t) and indicate the general line of the proof of the theorem.

The e-entropy of a real-valued stochastic process &= {&(t)}o<:<r) E 5: S(u)du
< o0, is by definition

H(§)=_inf 1@ ;B 6w —rwlrduse],

where I(§, ) is Kolmogorov’s amount of information [3] and the infimum
is taken over all measurable processes p={7(t)}s;sr- If &=(&, &, --) with

E gjl &< co is a P-valued random variable, H(&) is defined by
H(®= _int {167 EDle—nl=e].
p=(7,**) J=1
In the case of a finite dimensional random variable &§=(¢,,- - -, &,) with f{;, &
< oo, the infimum of I(§, ) shall be taken over all »p=(y,---,7,) with
E gl& ;—1n;1*)<el. We can reduce the calculation of the s-entropy of a sto-

chastic process to that of infinite dimensional random variable by the
following lemma 1, which is due to Y. Baba.

LEMMA 1. If £¢t) (0<t<T), E(t)=0, ES: E(u)du< oo, is @ mean
continuous process with covariance function r(t, s)=E{(t)é(s)}, then
Hs({e(t)})zHé((éli Ez’ M ')) ’
where $,=S: S(wp(u)du and ¢,t) is the jth eigenfumction of the inte-
gral equation :
(4) |, it Shols)ds=op(t) .

PrOOF. As is well known, the integral operator R with kernel
r(t, s) defines a symmetric, positive definite, completely continuous ope-
rator in LY0,T]. If we arrange the eigen values of R as ¢,=0;=>---
— 0, we know immediately from general theory

(5) E‘fj:(), E£i$j=aj5ij9
EX&=30,=E ST uydu< oo .
j=1 j=1 0
Now take an arbitrary measurable process »(t) (0<t<T) such that

E| j¢w)—rwtduse,
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and define
T
7=, rwe .

Obviously, it holds that
(6) ES e~ nl'=E| 1t —rtl'duse.
Since the linear operation from L*0,T] to I*:

()= Gl &=\ L (udu

is one to one, onto and bimeasurable mapping*, we have

( 7 ) I((E(t)} ’ {ﬂ(t)})—_-I((eu 621 ° ')y (7]lv /TR '))

in view of a fundamental property of amount of information: a one to
one, onto and bimeasurable mapping preserves amount of information
[3]. From (6) and (7) the result of the lemma follows at once.

As to a P>valued random variable we have the following:

LEMMA 2. Let a random variable (&1,&,---) satisfy (5) and ;;a,
<oo. If s’éjgl o, following inequalities hold ;
H((&,, &0+ NZHe(61, -+, &) Sor every m,
He((61, &0 - N=Ho(G1yv 1 €m))
where m is an arbitrary integer such that ez—ji 1”’=02>0'

=m+

ProOOF. The first inequality is trivial according to the definition of
e-entropy and a property of amount of information [3]. As to the second,
we see easily from the definition

H((61) &5+ 0))
é infﬂ {I((Eh 52,‘ ¢ '); (7]17' 0y Nmy 0» 0" * '));

[T
E§1|51"7],‘|2§52“ P ‘71}

J=m+1

< inf (I &) G na) B3 IE - S0

[T

and random variables (&, &s,--+), (Eu,o* 1 &m)y (71 * s 7m)

T
* It is easily proved that we may consider {(¥) (0=¢< T) with E S {(f)¥dt<oo to be a
L3[0, T] valued random variable. ’
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form a Markov chain} ®

= ot {116, G n) BB e -, ser)

[CITRLTN

=}Id((el’ Tty Em)) .

Here we note that the range of the infimum of (%) is not empty. In
fact we may give an example of the conditional density function of
(9, + +» 7m) With respect to (&, &, --):

1 m &
P(yu"'y?lm|xnwz,"‘)=mexl){ W?(ﬂj—a%y},
a=1— moz >0.

20'1
i=1

LEMMA 8. If n dimensional random variable (§,&,:--,&,) with
ﬂ=E;"‘_,_l€§<oo has a bounded continuous density function p(x,, s, - -, x,),
then

1

H((&,- - ,e,.))zn log = +"2‘ log n—nlog v 2ze +h((&,,- - -, &),

1

Hi(fy - )< 2 log 2+ % log n— nlogx/Zne(l——E>

2
+h((51) ) En))+o(1)

as €| 0, where h(&,---,&))= —Sm (s, - -, x,) log Py, - - -, x,)de,- - -da,
18 the differential entropy of (&,,---, &,).

For the proof of lemma 3, [2] and [4] should be referred. We omit
the proof and note only that the latter inequality is a little stronger than
the inequality in [4] which is proved under more general conditions
about probability density function. We might rather derive these in-
equalities following ideas of [2].

Lemmas 1, 2 and 3 enable us to evaluate H.({£(t)}) of a stochastic
process from above and below with the help of the formulas of e-entropy
for finite dimensional random variables, i.e. the inequalities in lemma 3.

2. Throughout the rest of the paper let &(t) (0<t<T) be a diffusion
process introduced in Summary. We may consider such £(¢) to be con-
structed by the stochastic integral equation :

$(t)=S: a(¢(w)dB(u)  (B(u) is a Brownian motion).
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Its covariance function
"t 8)= So Ea¢w)du  (trs=min {t, s})

is obviously continuous in ¢ and s. We trace the argument of section
1. For this case, for the eigenvalues of the integral equation (4) we
have

LEMMA 4.

0,=Cj*+o(j7Y), c:zlz.{gf JWdu}’ .

PrROOF. In this case (4) is equivalent to the boundary value prob-
lem of a second order differential equation:

_df 1 _de} 1,
{ dt | Ea(§(u)) dt g

@(0)=¢'(T)=0.

The statement of the lemma follows from the result of ([1], p. 361).

Define random variables

El= S: S(u)gal(u)du (j=11 29 ° ') ’

where {¢,(t)} are continuous eigen functions corresponding to the integral
equation (4). In order to investigate the characteristic function of
(eh $2y Tty En) .

Py 2y Z,,)=E{exp (i ,Z:l z,e,)} :
we introduce a process
t(t)=exp {i ,21 2, Sj E(u)«p,(u)du} 0<t<T).
If we put v(t, x)=FE, [l(t)], denoting by E,. the expectation with re-

spect to the conditional probability P, .(-)=P(-|&(t)=x), there holds a
relation

A1y Agy e+, 2)=2(0,0).
On the other hand, since for u=t

g =¢0)+|" ale©)dB()

holds with probability one, we have almost surely
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) =exp [ist) £ 4,5, 0)] -0,
(8)
ty=exp i 514, | ate@)s,(0)dBO)
£©= v/wadu.

We have used a fact that we can change the order of ordinary integral
and stochastic integral in this case.
Taking expectations E,, of both sides of (8), we obtain

ot ) =exp fiz 31 2,5,0)] B0

LEMMA 5. #(t, x)=E, [C(t)] is written as follows:

(9) t, 9)=E..[exp || 46, €o)ds]],
where A(t, 7)= ——é—a(m)’ 121 2N .

PrROOF. We apply Ito’s formula of stochastic integral to £() to get
~ ~ T ~
Eo=Er)+| AGs, e0)is)ds.

Taking expectations of both sides and using Markov property, we know
%(t, x) satisfies the following equation:

(10) at, x)=1+E,,,§f A(s, £(s))i(s, &(s))ds .

Because of boundedness of |A(t, x)| it is easily shown by usual iteration
method that (10) has a unique solution (9).

On the basis of lemma 5 we obtain the following estimate about

the characteristic function of (&,---,&,):
LEMMA 6.
1 k2
|(2s, 25, - -+, 2)|<exp {_EI? El“ﬂg} .

PROOF. As ¢(4, 4, -+, 4,)=v(0, 0)=%(0, 0), we see from lemma 5,

(11) |¢(2!r 22’ ct Ty ln)l.gEo,o

exp {{ A, e

=Eexp |~ 2{ ale(s)) 3 1£3e)ds]
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Sexp{——’zf-é S f,(s)*ds} .

On the other hand multiply by ¢,(t) the both sides of the following in-
tegral equation, which is actually equation (4),

7101t)= |, r)p Mds+7) | p,(e)s,

where 7(s)= S: Ea(¢(u))*du, and integrate from 0 to T to get the relation
T T
o,=2{ o )] oois]dt
T T 2
==|, g\, esoasf a

= o[ eoas} at={ Bacrrsieyar.

Hence

|, fityar=2 .

This inequality together with (11) proves lemma 6.

We need a lemma estimating the differential entropy from above
and below :

LEMMA 7. n dimensional random variable (¢, &;,---,¢&,) has a con-
tinuous bounded probability demsity function p(x, xs,---,2,) and its dif-
Sferential entropy h((&,&,---,8&.)) is bounded from above and below as
Jollows :

h((Eb 52; "ty En))élf)g;”; (27"'&”:])1/2 ’

h(E1, &0+, E)) = — Iog'n' ( e )1/2 '

PROOF. As the characteristic function ¢(4, 4;,- - -, 4,) is a L'-function
of (A, A,+--,2,) from lemma 6, there exists a density function p(z,, x;,
-+, %,) which is represented by its inverse Fourier transformation:

1 i ... cen
p(wl, Ly, o °, xn)—w SR”eXp( @Elj$j>¢(ll, 22, N l,,)dll dln

Obviously p(z,, 2, - -, 2,) is continuous and bounded :

M =sup p(y, %s,°*+, %)
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(21:)" S |¢(219 221 vy Zﬂ)ldzldlz‘ . 'dzn

~fi(5e;)

The first inequality of the lemma follows at once from the fact that
differential entropy takes its maximum value in case of Gaussian ran-
dom variable when E¢;=0, and covariances E¢¢,=d,0,, (¢,5=1,2,---,n).
The second inequality follows from a trivial inequality A((¢, &,- -+, £.))
=—log M’ for every M'=M.

3. Now we proceed to the proof of the asymptotic inequalities of the
theorem. As is verified in 2, lemma 1, 2 and 8 are applicable to the
diffusion process &(tf) (0=<t<T). We combine inequalities shown in lem-
mas to get the desired evaluations.
(i) Evaluation from above;
Take a sufficiently small eZSZ‘, o;. For each m such that & -, 3! o; =6
=m+1

>0 we have from lemmas 1 2 3, 7Tand 4

H({¢ON=H((¢y,- -, &n))

m 1, m m
gT log F+7 log m—m log «/27re<1—s‘/jz=‘,la,)

+h((61’ tt Sm))'l'o(l)

<L 1og T -2 —-mlog\/l—e/za, +o(l).

=2 ¢ [l Fjm

If we choose m and @ so that i~a,,. *®_ the relations ##=¢'— Z} ay
m J=m+1

and 0,=Cj*+0(j™) (lemma 4) and > _~__1__ determine m_[2C }**’.

jemt1 &

Finally we have by using Stirling’s formula m!= 27 e"mmm+12,
H({¢®O})=m +o(m)=20%+ o(é) .

(ii) Evaluation from below ;
Take a sufficiently small ¢>0. For every n we have from lemmas 1, 2,
3, 7Tand 4

H(EODZHAEy - -, &)

*  fmu~gm means lim fin/gm=1.
¥ [r] is the integer part of z.
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log %+_’22 log n—n log v2z€ +M(Es - -, &)

v
IR

v
TR

log ;1?—1--723- log n—mn log /27e —log ﬁ

K \1/2
( 2ﬂk0‘l

and by using Stirling’s formula

kC

n
=1
2 % gk

—% log n+n+o(n).

If we choose n= [% } the first and second terms of the last line
5

cancel each other to be o(n) and we have
He({s(t)})>n+o(n)_ﬁg l+ < 1 )

Thus completes the proof.

Remark 1. We can extend our theorem also for a temporally in-
homogeneous diffusion process with slight modification of the above dis-
cussion. Let ¢(¢) (0<t<T) be a diffusion process constructed by the
stochastic integral equation:

&)= So b(u, &(w))du+ So a(u, &w)dB@)  (0<t<T)
where we assume
la(¢, x)—alt, ¥)| + [b(t, ) —b(t, y)| < Llz—yl,
b(t, 2y < L(1+2%,
0<k=<a(t, zy<K.
Then we have

k1

L 2 v Eatw sy auf L Hem 3 2] v Eatw fwy duf L.

Remark 2. Our evaluation (i) in the proof of the theorem is quite
analogous to that of infinite dimensional Gaussian random variable [5].
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