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Summary

In this paper we supply tables of constants necessary to use the
procedures developed in [4]. We also present a new procedure for one
of the cases not discussed in that paper, as well as a proof that it is
parameter-free at level P*,

1. Introduction

The framework of a “best” population problem consists (usually)
of the following ingredients:

(1) there is a collection I7=(zy, ---, ) of k populations or pro-
cesses, defined over the same sample space (which in this paper is the
real line);

(2) the population =; is distributed with probability density func-
tion f(x|6,), where 6, may be vector-valued ;

(3) interest focuses on a specific criterion h,=g(f;), where the
functional form of g is known—for example, g(f;) might be the popula-
tion mean or the reciprocal of the variance of the 7th population, =1,

BN k ;

(4) we wish to find (select, pick, estimate, etc.) that population
which has the largest value amongst the h;, i=1, .-, k.

Using the above notation, we can state the following definition :

DEFINITION 1.1. A collection of populations 7=(z,, ---, ;) contains
a best population with respect to the criterion h,=g(6;) if and only if
there exists an ordering of the h; such that

(1.1) hin>hy g2 hpgnZ - Zhy .

* This research was supported by the Wisconsin Alumni Research Foundation and
Mathematical Research Center, University of Wisconsin.
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We then say that the population corresponding to A, is the best popu-
lation and we designate it by .

Now most of the literature on best population problems aims at
finding statistical procedures which will select a subset of I in such a
way that the best population is included in the subset with probability
at least as large as a predetermined number, say P*. We have the fol-
lowing definition :

DEFINITION 1.2. Let a sample of n, independent observations be
taken independently from each population (or process) 7, of a collection
n=(r, -+, 7). If a statistical procedure used to select a subset of I7
is such that the best population (see (1.1)) is included in the subset, we
say that a correct selection (CS) has been made. Further, if the pro-
cedure makes a correct selection such that P(CS)=P*, where P* is a
preassigned number, with the procedure (and of course, P*) independent
of (8, ---,6,), we then say that the procedure is parameter-free at level
Px*,

To re-emphasize in light of the (above) Definition 1.2, we are inter-
ested in this paper in certain parameter-free procedures which will re-
tain a subset of /7 in such a way that the best population will be in
this retained subset with probability of at least P*, and where the
notion of “bestness” arises from the following considerations.

It very often happens that interest focuses on a specific interval
A=(a,, a;). For example, in the assembling of “stable” amplifiers, cer-
tain electronic tubes used in the amplifier must have transconductances
that lie within the specified limits a, and a,, @,<a;; or, in the manu-
facture of a certain type of thread, the quality of the thread is judged
to be “high” if the tensile strength is greater than a known number,
say a,; that is, the tensile strength should have value lying in A=(a,,
o) ete. (For other engineering applications of this sort, see [1], [3]
and [5].)

Obviously, it is quite important for the manufacturer to know what
percentage of items he is producing meet the required specifications—
he is probably in the situation where he knows that he must produce
at least 100a% of the items that do satisfy the requirements or speci-
fications to make a profit. Now if the manufacturer can choose among %k
different processes to produce the items, he will wish to use that process
which gives the largest number of items falling in the specified interval
A, so that he is interested in which process gives largest value to the
coverage of the interval A, that is, h,=g(6,) is now taken to be

(1.2) Ci=C,~(A)=§Af(x|ai)dx, i=1, - k.

(We are including here the case that one basic process may be capable
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of k& independent modifications.) Hence, we are interested in finding
the population that has largest value amongst the C;, and specifically,
to construct selection procedures which are parameter-free at level P*,
say.

2. Normal populations

In this section we examine the problem of section 1 for a collection
of normal distributions, when A=(—o0, a], with the constant “a” known
and specified beforehand. We will assume that all n,=n, i=1, -, k.

Suppose then we consider a collection of populations II=(x, - - -, m),
with z; distributed as N(g;, ¢?), 1=1, - -+, k and where there exists a best
population which has largest value among the k coverages

@.1) Cl@=|"_ @)y exp(~(@—p)2atde
= S(_a:i)/ui ——1/12; exp {—7}/2}dz

=¢((a—ﬂ¢)/0t)! 'I:=1, "',k.

Since @(t) is a monotone increasing function of ¢, the problem of select-
ing the best population is the problem of the selection of that population
with the largest value of (a—pu)/s;, or least value of (u,—a)fo;.

The problem splits itself into various cases. To restate, we address
ourselves to the problem of picking a subset of the k populations, based
on k independent samples of » independent observations each, in such
a way that P(CS)=P*. The first five cases stated below are shown
to be parameter-free at level P* in [4], and the reader is referred to
that paper for details of proofs. In this paper, we supply tables of the
necessary constants needed to implement the procedures. The procedure
for Case 6 is new, and accordingly we include the proof that it is
parameter-free.

Case 1. g’s unknown and variable; ¢! known, di=d* i=1,---, k.
The parameter-free level P* procedure for this case is
Procedure 1. Retain population =, in the subset if

(2.2) X< Xp+d,

where X, is the smallest of the k sample means X, i=1,---,k, and
d,=d(P*, k, n) is chosen to make (2.2) of level P*.

Now if we set d;=4nd,/s, it is shown in [4] that
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2.3) Pr={" 110G —d)1p(e)iz

where ¢(f) and @(t) are the density and cumulative distribution function,
respectively, of a normal distribution, mean 0 and variance 1. Values
of d{ for the cases P*=.75, .90, .95 and .99 are given in Table 2.1 for
k=2, 3 and 4.

Table 2.1*%. Values of the constant di/, where di’=+v 7 dijo, and where
dy is the constant needed to make the procedure 2.2 of level P*

k=2 k=3 k=4

P¥| .75 | .90 | .95 | .99 | .75 | .90 |.95 |.99 | .75 | .90 | .95 | .99

.953911.8124/2.32623.2900 1.43382.23022. 7101 3.61731.68222.41562.9162|3.7970

* This table was calculated by Ernest Gloyd, Department of Statistics,
University of Wisconsin, January, 1968. It has been brought to our attention
that these calculations form a subset of a table contained in [2], calculated
by R. E. Bechhoffer (1954).

Case 2. p’s unknown and variable; ¢*’s known and variable.

For this situation we use the following parameter-free procedure of
level P*, namely

Procedure 2. Retain population z; in the subset if
Z<Zy+d,
where Z=(X,—a)/s;, Zu,=r?_kiln Z, and dy=d{/y7%, where d/ is defined by
(2.3).
Case 3. p’s unknown and variable; ¢ unknown, ¢'=d".

It is clear from (2.1) that for this case we again wish to retain in
the selected subset of /7 that population with the smallest z. However,
as we do not know the common value of &), we will need to estimate
it, and for this we make use of a pooled estimator W of ¢* given by

=DVt (= DVE_ 1 & o,
(2.5) W D Vi

with Vi=(n—-1)" 2"} (X;,—X,)%, i=1, --+, k. The parameter-free level P*
j=1
procedure for this case is
Procedure 3. Retain population =z, if

(2.6) X=X +d W
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where d, is a constant satisfying
@2.7) P*=S°° [1—T(t— v T dy)]*dT(t) ,

with T(t) denoting the cumulative distribution function of a Student-t
variable with k(n—1) degrees of freedom. Table 2.2 gives some values
of d; for selected P* and n, with k=2,3 and 4.

Case 4. ¢'s known with g,=p, ¢=1,---,k; ¢”s unknown and
variable.

This case splits itself into the two following cases.

Case 4.1. p>a. The conditions defining this case together with
(2.1) imply that we are looking for that population with the largest of
the ¢,. The parameter-free level P* procedure is as follows:

Procedure 4.1. Retain z; in the subset if
(2.8) Vizd, Vi
where
@8)  Vi=noS(@—pf, i=lek, Vip=max V7,
and d,, satisfies
@9 Pr={" Fuwid, ) dF ()

The function F,(u) is the cumulative distribution function of a chi-
square variable with n degrees of freedom. We tabulate some values
of d,, in Table 2.3.

Case 4.2. p<a. For this case, it is clear that we are looking for the
population with the least of the o;,. Accordingly, the parameter-free
level P* procedure turns out to be the following

Procedure 4.2. Retain r; in the subset if
(2.10) VI=d, V3

k
where the V/¥s are defined in (2.8a), V{}=min V/%, and d,, satisfies
i=1

@.11) Pr= g: [1—F(v/d, )] 'dF(v)

with F,, as before, denoting the chi-squared cumulative distribution



155

PROCEDURES FOR A BEST POPULATION PROBLEM

cegs” £299° €80L° 206L° 1866 G189 00€L" .18 6529° S8I1L 18LL° g8’ 001
£6.8" 9¢g9° 020L° Ge8L" 1066 LvL9° ovzL’ Z€18” Z819° €21L 6.9L° 028" <6
999G 0879° 2569° €08L" qI8g” L99° 9LIL" 9808 0019° LS0L° vo9L’ 1298 06
zL8s” 66€9° 689" 8vLL" €aLs” 9659° 2012° 9€08" 2109 869 £96L" ceos” 8
1L%5° 11€9° 1089° 189L° 296" 219" ze0L° 286L° L16G" 2069° 86vL" 668" 08
29gs" 9129° g19L° 2oL LT8G 029" 1569° ¥26L° 186" €289° LevL zse8” L
¥hes €119’ 2299° 0SS 1075 02€9 £989° 098L° 20.8° 1€L9° 6VEL 08" 0L
911G 666" 6159° 1L 6L26" 1129° 999" 88LL 086" 0€99° €92L £5¥8° 99
cL6v /86 9079° €8eL" 9€1S" 0609° 8599 o1LL" 9v¥s" 8169 L91L G6E8” 09
16 1289 85€9° ovEL” 2206 8€09° 1199° cl9L” 88€S" 69%9° 9e1L 69€8" 8g
zs8¥" Q9.8 L0€9° coeL” 108" 866" £€969° ovoL" 82€S" 699" €80L° £res’ 99
8% 20L8° 529" y9eL’ 0567 1268 2189 200L° 928 99€9° 8E0L" q1eg” ¥g
617" cv9g" 8619" 022L €88y" 986" 6579" 298L” 0025 01€9° 0669 c8z8” s
V97" 18¢5° 6€19° $LIL 218" 085" 20%9° 125L° 1€15 2529 0v69° 528" 05
.87 $155° L209° GZ1L Q€LY 6ELS" £7€9° LVl 6505 619" 1889 1228° 8y
6y €S 2109° yL0L 0997 029G 1829° ocvL” £867° 9219’ 1€89° 918" 9
zv 896" 965" 610L° 6157 168G 129" 08€L’ €067 1509° aLLY 618" ¥
92€Y" 682S° 186" 1969° 677" 028G" V19 8z€L" 6187 386G 60L9" 6018 o
GeTY” 028" ¥6L5° 0069 207" 8EVS” 1209° aLelL €LY 2066 299" 1908 ov
8eTH" 911G T1s° 689" 90€¥" 18€5° 2668 21l Se9Y” GZ8S" 0.59° 1208° ge
9E0%" 2208° $295° €929 S0gh* 858" 068" 1L sesy” LE18° £679° aLeL’ %€
126€" 267" 085" 1899 9607 651G" L18¢" 8L0L° 8z e 199" 616L" €
z18¢e” Z18¥" 627G 5099 186¢" €506° 618" €00L" yIEY” Zveg” 22€9° 198L° €
889€" 969%" 02€5" 919" Ls8¢" 8€67° €196 1269° 161 zZe¥s° 229" 86LL° 0€¢
9cge” 0.5 2028 0e¥9° czLe PI8Y" 66¥S" 2€89° 6507 e1es” 6119° 62LL" 82
eTve” vy $L06° €1€9° z8se” 6L9%" yLE8° €eL9°" 9t6€" €816 $009° £29L° 92
652€" o8ey” €e6v 9619° Lzve zesy 9€26" 5299 19.€" #08° 9/8¢" 896" 2
260€" AL 8LLY" 909" ggze” 0Lev" 806" 709" 165€° €88y yeLS” oL v
6062 Zvee” 097" 616G° €20¢" 061¥" 169 L9€9° ovE" 80LY" GlsG" y9gL" 02
80L2° e i €5.5° 0.82° 686€" veLv: 1129° L61¢" o15¥* 6€G" 6€2L” 81
98¥2" y1ge” 617" 2968 92" 29Le” 9057" 2€09° 9962 g8zY" 9818 ¥60L° 91
€22 2528 666" 0vES” 16€2° £05€E" gsey 185" ¥0L2° 9207 cvev 1269° 1
0961° 1962 ¥oe” $L08° o1z’ 20z¢” 096¢" 896G L0Ve zaLe 1597 1129° a1
ot 219e° £62€" 057" 8LLT" 9v82" G09€" 9528 2902° ggee” c0gy” 9v¥9° o1
8T g612" 298¢ ovEY” €0VT 9192 991¢" 9587 6591 6062" 298¢ 6609° 8
€280 €891’ gige” z6.€" 6960° 881" 1092 eIey” 1811° veee” yLze 119" 9
9270 501" 98G1" 1662 870" 611" 0€81" 0se” 9290 Q9T ceve crey” ¥
500 €820° 1850° €99T" 1900° LvE0" €2L0° 802" 1010° 9250 I geee” z
66 6 06 <L 66 6 06 SL 66 6 06 Gl ,“ww////
=9 e=9 =9

«d 19A93] J& 9913-103owreled (g'z) 2anpeooid 9y} oYW 0) PIPIIU I'7p JUBISUOD Y3 JO SAM[EA ‘€7 AIQEL



IRWIN GUTTMAN AND ROY C. MILTON

156

(44471 181671 Viev'1 8€LC°T | 8929°1 L3Lv'1 ¥SLE° T 8L2¢°1 LL6S°T L16€° 1 V€651 6VP1°1 001
ELVL'1 GGES" 1 LVEV'1 0282°T | 6669°T 6.87°1 0.8¢€°1T S¥eT'1 SL19°1 8€0V" 1 G20€° 1 68VI°1 S6
8VLL"1 178G 1 e6vv° 1 0162°T | €52L°1 ¥0Ss° 1 L66€°1 81¥¢'1 €6€9°1 TL17°1 LT1E°T €EST'T 06
GS08°1 SVLS°1 €597°1 800€°T | €eSL°T L2251 9ETV°1 L6¥2°1T ¥€99°1 9IEYV'1 3ece’1 186T°1 S8
c6€8°1 126571 0€8Y "1 9IIE'T | 9¥8L°T 8¢¥S°1 0627°1 68921 1069°1 LLVV' T LEEE™T VEIT" 1 08
€LL8"T $329°1 L20S°1T 9€2€'T | 96181 V6961 19%9°1 2892°1 002" 1 9697 1 S9¥E° 1 €691°1 Gl
026" 1 6099° 1 6¥2S°1 0LEE'T | 26S8°1 L0651 ¥S9v° 1 0642°1 LESL'T LG8V 1 809€°1 LSLT'T 0L
L696° 1 €689°1 00SS° T CSE'T | ¥P06°T 619°1 1871 316c°1 1¢6L°1 ¥80S°1 69.€°1 0€81°T g9
8920°2 02l 1 L8L5°1 ¥69€°T | 99G6° T ¥289°1 611S°1 160€°1 €9€8° 1 E€VES' 1 256¢° 1 (4098 09
2380°2 69€L° 1 S16G° 1 OLLE'T | 66L6°T 0.99°1 622S° 1 TTIE°T 65981 8GVS°1 €e0v° 1 8¥61°1 8§
¥6L0°¢ G¥SL'1 0609°1 1G8E°T | Lv00°T G289 1 GVES'1 9L1E 1 69.8° 1 6861 81V’ 1 9861°1 96
G801°¢ E€ELL'T ¥619°1 LE6E'T | €1€0°2 1669° 1 69¥S°1 ¥ee' 1 36681 60L5°1 607" 1 L202°1 14
86€1°C €E6L° 1 8¥€9° 1T 82071 | 8650°C 891L°1 G09S° 1 LIEE T GET6°1 L¥8S° 1 90€¥V° 1 002" 1 (4]
9ELL°C 6¥18°1 €1S9°1 SCIV'T | S060°2 8GEL° T €VLS°1 S6€€° T 06761 G66S° 1 60¥V° 1 SI1¢°1 0%
0015°¢ 18€8°1 0699°1 06Cy'T | 2821°¢ 29SL°1 G68S° 1 8LVE"T 896°1 PS19°1 05Sy°1 V918" 1 14
96VC ¢ 1€98°1 2889°1 SVEV'T | L6S1°2 28LL1 65091 296€°1 6900°2 G2E9°1 6€97° 1 91681 14
L262°¢ €068° 1 880L°T €9VV'T | 8861°C 1208° T 9€29°1 €99€°1 §6€0°C 6059°1 L9V 1 cleg’1 144
00¥€°¢ 0026° 1 €IEL"T V6Sv'1 | L1VE'2 1828°1 82¥9°1 29L8°1 ¢SL0°¢ 01L9°1 90671 ceeT’ 1 av
616€°¢ ¥2S6° 1 8GGL°T 9ELV'T | 188872 ¥998°1 L8991 6.8€°1 (44484 8269°1 9606° T L6€2°1 ov
S6Vv°2 0886° T L28L°1 168v°1 | LO¥E"C 9.88°1 G989°1 00v° 1 VLS1°C L91L°T 022S°1 L29%¢°1 8¢
GEIS°C §L20°¢ 218" 1 T190S°'T | S86€°2 6126°1 LITL°T 9E1V°1 1502°2 0EVL'1 00¥S°'1 ¥ae 1 9€
€685°¢ €1L0°¢ €618°1 6V2S'1 | 2€9v°¢ 1096° 1 S6EL° T €8¢v'1 €852°¢C TeLL’1 669S° 1 829¢°1 ¥€
999°2 S021°¢ 0288°1 LSVS°T | 1986°¢C 6200°¢ 90LL"T 91 181€°¢C S¥08° 1 61851 02221 (43
06SL°C Q9L1°C €€26°1 069S°T | 2619°¢ 0150°¢ 508" 1 8297°1 098€°¢ 60¥8°1 S909°1 €280 1 0g
9698°2 96€C°¢ €0.6°1 €965°T | LVIL'C 6S01°¢ 8¥¥8°1 €e8y°1 LE9¥%'C 1288°1 c¥e9’ 1 8€62°1 82
0066°2 821€°% 1760°¢ CS¢9°'T | L928°¢C 6891°¢ 6688 1 ¥90S°1 9€385°¢ 36261 18991 L90€° 1 9%
CLEL'E ¥86€°¢ 1980°2 9659°1T | L9S6°¢ €2¥2°¢ 1c¥6°1 0€€S"1 1699°¢ 8€86° 1 610L°1 J4L4 4
Syie'e 6667°¢ $091°2 L669°T | 8EIT°€ 162€°2 ¥€00°¢2 86961 6V8L°¢C 8.¥0°¢ OvvL'1 €8EE°T 144
GgES'€ 9229°¢ 88V¢°¢ SLYL'T | 290E°¢€ SEEV'C ¥9L0°¢ 1009°1 6L£6°3 (4454 8€6L° 1 08G€° 1 02
€L08°€ YWLL'T 0L5€°2 SV08°T | 8L¥S°€ 619S°% ¥S91°¢ LEV9°1T 1821°¢ CL1C’ ¢ 6€58° 1 VI8E'1 81
LS9T° ¥ GL96°2 €E6V°¢ V6.8°1 | 8098°€ €V2L' T 99.2°% 1L69°1 1gLEe°¢€ GEEE’2 1826° 1 L607°1 91
8€99°¥ 922¢°€ 20L9°2 6596°T | 0¥82°¥ 0L€6°3 (414 44 Ly9L 1 6L69°€ LE8Y'C ¥2%0°¢ 6¥V¥y°1 11!
GLGE° S 69.5°€ 8316°C 0980°c | 9888 % §62¢°€ 1v19°¢ €681 SaST'¥ 9989°¢ 1 Z24%4 206V 1 4t
6197°9 eS0TV 592" € 0892°'c | 2528°G 6659°€ L368°'¢ V9.6°1 €678 ¥ 38L6°2 902€°¢ €166°1 01
9¥EY'8 9286V 0z€8°¢ LEIS'C | L89V"L €19¢° ¥ GIEE"€ 80912 L620°9 18E¥°€ V68S°¢ 96€9°1 8
8EEB"CT 96¢L'9 8€06° ¥ ¥896°¢ | G1€0°T1 6L1L°S SLET Y 0S.v°¢ L99¥%°8 6683V 9¥50° € 128L°1 9
8S15°8¢ 6€GL°T1 | T160L°L €010°% | 6890 €C S91V°6 89€1°9 TLST°€ 1286°GT | ¥88€°9 €L0T'V ¥90°¢ i4
00007262 | 0000°LS | 0000°2Z | 0000°6 | 0000°86T | 0000°8E | 0000°8T | 0000°9 0000°66 | 0000°61 | 0000°6 0000°€ 4
66° S6° 06" SL* 66° S6° 06° SL° 66" G6 06° Sl wd *
y=9 €=y c=9

*d [9A9] e 23a1-1930wrered (Q]'g) 2inpadoxd oY) 9yeUI 0} PIPIJU 4P JUBISUOD Y} JO SAN[BA ‘§'Z O[qelL



PROCEDURES FOR A BEST POPULATION PROBLEM 157

function, n degrees of freedom. We tabulate some values of d,; in
Table 2.4.

Case 5. ’s known, variable; ¢’s unknown and variable.

Since we wish to find that population with least value of (¢,—a)/s;,
we see immediately that this case splits into the following three cases:

Case 5.1. All p; known and greater than a. For this case, we re-
cognize that we wish to select the population having greatest value of
o)(ri—a), i=1, ---, k. We use the following parameter-free procedure
at level P*,

Procedure 5.1. Retain population r; in the subset if
(2.12) Qi=d; Q%

where @=U?/(u—a), i=1, -+, k with Ul=n"" j}E(Xi,—m)z, and where
x =1
ds,1=dy;. (sz):lrilgx Qf)

Case 5.2. All p; known and less than a. For this case, we wish to
select the population having least value of ¢,/(a—p;). We use then, the
following parameter-free procedure at level P*.

Procedure 5.2. Retain population r; in the subset if

(2.13) Q7 =d; Q0
where Q=U?/(a— ;) and ds,=d,,. <Q{¥) = ré‘_in Q?) .

Case 5.3. Al p; known, with pnSpm= -+ =pu,-n<tun<e<ppn=
e+ <y, where 1<k, <k. Here, p; denote the ordered values of the
pi, i=1, --+, k. The properties of the normal distribution come into play
and we note that, since as p decreases the coverage of the interval
(—oo, a) increases, we may eliminate from consideration the k—Fk,; popu-
lations which have means greater than “a”, and then apply procedure
(2.13) for k=k;.

Case 6. p’s unknown, g,=p, i=1, ---, k; ¢”’s unknown and variable.

In this situation we are faced with the unpleasant fact that not only
do we not know the common value g of the g;, but also, we do not know
whether p is greater or smaller than the known number a. Since we
wish to find the population with the least value of (z—a)/s;, 1=1, -+, k
(see (2.1)), this means that we do not know whether the best population
is the one with the largest ¢; (as is the case if z>a) or the one with
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the smallest ¢, (as is the case if p<a). We do however, assume that
there exists an ordering of the o; such that

(2.14) o<om="-+ - Sou-11<0u -

Further, we may gain information as to whether p is less or greater
than “a” by using the combined estimator X of x, where

FonXit-4nkX,

(2.15) o

1 n -
==X,
P a
where X,=n" 2‘, Xi;. Denoting the usual unbiased estimator of ¢! by
Vi, ie., VI =(n—1) 12 (X,;—X.)!, we now state the following procedure.
=1

Procedure 6. Compute the estimator X of ¢ given by (2.15).
(i) If X>a, then retain #; in the subset if
(2.16) Vizds Vi

k
where V§i,=max V}, and where d,; is given by
i=1

2.17) de,(n)=d, (n—1) for n=2.
(ii) If X<a, then retain =z, in the subset if

(2.18) Vi=ds Vi
where Véb:xzfin V2, and where d;, is given by
=1

(2.19) de(n)=d,(n—1) for n=2.
We have the following theorem.

THEOREM. The procedure 6 given above (see (2.16)-(2.19)) is pa'ram-
eter-free at level P*.

PROOF. A correct selection may be made if either one of the fol-
lowing events occurs:

E: e >a, V*=d,,V3,, when p>a, and V? is from that population
with largest ¢!, or

Ey: X>a, Viz=ds Vi), when p>a, and V? is from that population
with smallest o}, or

E;: X <a, V1=d,;V3, when pg<a, and V2 is from that population
with the smallest ¢?, or
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E,: X <a, V2.<d;,VZ,, when p<a, and V2. is from that population
with the largest o}.

We note that E,NE,=¢, the null set, for =1,2 and j=3, 4. Hence
we have that

(2.20) P(CS)=P(E\N E;)+P(E,NEy)
=P(E)+P(Ey) [1 — P(Ey | E)]
+ P(Ey)+ P(E) [1— P(Ey | E)]
= P(E)+P(Ey) ,

and using the property of independence of sample means and variances
when sampling from the normal, we may write the above as

(2.21) P(CS)=P(X>a|p>a)-Pi+P(X<a|p<a)-P,
where

2 P,=P(V&,<V*d,,|V* from population with largest o),
(2.2
P,=P(V3,=V3/dy,| V2 from population with smallest 7).

We further note that from (2.21), we have
2.23) P(CS)=P(X>a|p>a)[min P]+P(X<a|p<a)[min P;]

and it is left to show that since dy;, and d,, satisfy (2.17) and (2.19),
respectively, that

(2.24) min P,=min P,=P*.

This enables us to write

(2.25) P(CS)=P*{P(X>a|p>a)+P(X<a|p<a)}.

Now X is clearly a normal variable and in particular has mean p. But
a normal variable is such that (i) if its mean exceeds “a”, the prob-

ability of X exceeding “a” is greater than 1/2 and (ii) if its mean does

not exceed a, the probability of X not exceeding a is greater than 1/2.
This means that the expression in the braces { } of the right-hand side
of (2.25) is at least one, so that we have

(2.26) P(CS)zP*,

that is to say, the procedure would be parameter-free at level P*.

It remains then to demonstrate that min P, and min P, have value
P* when the constants d;, and d;, given by (2.17) and (2.19) are used
in procedure 6. We begin with P;; we have that
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(2.27) P=P(Vi=V*ds,|V* is from the population with largest o?)
oo [k—1
=" cw/ds; ot |acer; ot

where

v? __1)Yn-D/2( 1/ 2\(n-1)/2—1
(2.278) €0 ot)= ;32 (nl) 5 /2)((‘;03 o SXP (= (n—1)vif2ot0) ot
- L]

It is easy to see that (2.27a) may, after appropriate transformation,
be written as
® S (Wie/dg Tr/oti 17 S( Wiildg PColir/otip

] 0

[ S ]

AW dW2 AW}

=K, ( s v ot )
= , , .
*1\ afen oty

(2.29) P1=S

0

Now it is obvious that K,,, is a monotone increasing function in its argu-
ments, where the of;;’s obey (2.14). Hence the minimum value of P, is
clearly

(2.30) Ky (1, -+, 1),
But comparing K, (1, - -+, 1) with (2.9) and because (2.17) holds, we have
(2.31) min Pldea,l(ly Tty 1)=P* .

A similar proof shows that min P,=P*, so that the argument leading
to (2.26) holds, and the theorem is proved.

3. A short note on the calculations

Evaluation of expressions (2.7), (2.9) and (2.11) was done by numer-
ical integration. Values of the Student-t and chi-square cumulative
distribution functions required in the integration were provided by stand-
ard computer subprograms at the University of Wisconsin Computing
Center. The subprograms evaluate these distribution functions through
their relation to the incomplete beta and incomplete gamma distributions,
where the incomplete beta distribution is evaluated by a continued frac-
tion expansion and the incomplete gamma by expansions and approxima-
tions selected according to the magnitude of the parameters,
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