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1. Introduction

Many problems in multivariate analysis involve the distribution
problems of the latent roots of positive definite random symmetric
matrices. In particular, the distributions of the latent roots of a Wishart
matrix and those of a multivariate quadratic form are very fundamental
in the normal multivariate case. In this paper, we shall give the density
functions of the following statistics composed of the latent roots of a
non-central Wishart matrix and of a non-central multivariate quadratic
form.

(i) The latent roots of the determinantal equations det(Z—iXX’)=0
and det(¥—2XAX')=0 (sections 5.1 and 7.1),

(ii) the maximum latent root (sections 5.2 and 7.2),

(iii) the traces (sections 5.3 and 7.3).

To treat the distribution problems of the latent roots of a non-
central Wishart matrix, we shall introduce a generalized Hermite poly-
nomial with a matrix argument, discuss some properties of it and give
its generating function (section 8). We shall also introduce a new func-
tion which is appropriate to discuss the distribution of a non-central
multivariate quadratic form (section 6).

2. Notations and preliminary results

Let S be an m Xm positive definite symmetric matrix. There exists
a zonal polynomial C(S) which is given by James [6] corresponding to
each partition k=(k,, - --, k), k;=---=k,=0 of integer % into not more
than m parts. The following integrals are used in the sequel, which
are fundamental properties of the zonal polynomials:

n 70z_ C{A) CAB)
(1) [, ciamBm) )= OB
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B

@ —XX’) ,

4
where the invariant orthogonal measure d(H) is normalized so as to
make the volume of the orthogonal groups O(m) and O(n) equal to unity,
A and B are mxm symmetric matrices, X is an nxn rectangular
matrix and

(2) gm (tr XH)* d(H)=5

m

(3) (a).=ﬂ(a—%(i—1)), (@=a(a+1) - (@+k—1) .

i=1 k;

Constantine [1] gave an important I-type integral (Laplace transform)
of a zonal polynomial, i.e.,

(4) S oetr(-—RZ )(det R)**C(R)dR=T",(a; £)(det Z)~*C(Z™),
R>

where

To(a; £)=zmm+0n ] F<a+ki——%('i—1)>

i=1

and

Re (@)+k.>p—1, =%(m+1) .
If « is such that the gamma functions are defined, then the coefficient
of binomial type is

(5) (@).=T"w(a; &)/ ,(a) ,
where

[ @) = gmem+r ;ﬁl‘ F(a— —%—(’L — 1)) .

Let A,(R) be a Bessel function of a matrix argument, that is,

1 & C(~R) _ 1
Io(y+p) =0"c (r+p0).k!  Tu(r+p)

Then the generalized Laguerre polynomial of an m Xm matrix S corre-
sponding to a partition £ of k is defined as

(6) A(R)= oFir+p; —R) .

(7) etr (—R)L/(S)= Smo A/(RS)(det Ry etr(—R)C(R)dR.

It should be noted that (7) is the same as the y-Hankel transform of
a function etr (—R)Cy(R), (Herz [5]). Constantine [2] has discussed some
properties of the generalized Laguerre polynomial, that is, he showed :



ON THE DISTRIBUTION OF THE LATENT ROOTS 3

(i) The Laplace transform of L(S) is
SM etr (—RS)(det 8) L(S) dS=TI"n(r+p; r)(det R)"C(I—R™)

(i) Li{0)=(r+p).CALy).
(i) |LAS) = (r+p).ClLy) etr (S).
(iv) LJS)’s are orthogonal polynomials with respect to the weight func-
tion etr (—S)(det S), that is,
[, etr (—S)(det SYLUS)LIS) dS=bu8. i I'nlr+53 CAL)
>

where k and | are degrees of L, and L, respectively.

(v) The generating function is

det(1=2)+|,_etr(~SHE(-2) Y dit)= £ 3 HOCD)

IZl<1,

where ||Z| means the maximum of the absolute values of the latent
roots of Z.

3. The generalized Hermite polynomials

The distributions of the latent roots of a non-central Wishart matrix
and of related statistics will be expressed as series of generalized Hermite
polynomials H(T) in the elements of an m Xn matrix T corresponding
to the partition « of k. H(T) is a particular form of Herz’s general
definition ([5] p. 503) and is given from the relation

(8)  etr(—TTHH(T)="ZL| etr(—2iTV" etr (- UU")CLUU") U,
T

where U and T are mXn (m<n) matrices and C(UU’) is a zonal poly-

nomial of degree k with a partition x. It should be noted that (8) can

be regarded as the Fourier transform of ‘etr (—UU')C(—UU’). Hence

we have the inverse Fourier transform

1

7.L.mn/z

STetr @iTU") etr (— TT")H(T) dT=etr (— UU")C(—UT") .

The following lemma which gives a relation between the Fourier trans-
form and the Hankel transform is very important.

LEMMA. Let f(U)=F(UU) be a real-valued function defined for a



4 TAKESI HAYAKAWA

positive semi-definite matric UU' where U is an mXxXn (m=n) matriz.
If f(UU') is square integrable over U, that 1s,

[, |f(®F@etRydR<eo,  r=2-p,
B>0 2
then we have for the Fourier transform

n”‘"”g(TT’):SUetr(—2iTU’)f(UU’)dU,
the y-Hankel transform of f, i.e.
o(TT= Sm A(TT'R)(det Ry f(R)dR .

ProoF. This lemma is a special case of Herz ([5], Theorem 3.4). We
here show that the Fourier transform of f(UU’) can be reformulated

by the (-;i — p) -Hankel transform of f(UU’).

(TT)=—L etr(—2TUNF(UU) AU
T U
=1\ av| er(—2irHUNF(UU)AH) .
T T o)
From (2) and (6), we have
(%)
(TT)=— 25| AamTT'UV)F(UV) AU

= S Acn(TT'R)(det RY"P2f(R)dR .

The second equality is shown by Hsu’s lemma. Hence the R. H. S. is
the <-"21—p>-Hankel transform of f(R), which completes the proof.

THEOREM 1.
(10) H(T)=(—1)* Le™~»(TT") .

PrOOF. Let f(UU")=etr(—UU')C(—UU’) in the lemma. Then
from (7) and (8), we obtain (10) immediately.

COROLLARY 1.
(11) H(T)=H(H,T)=H(TH) ,
where H, € O(m) and H,; € O(n), respectively.
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ProoF. The invariance with respect to H, is seen from (8) by a
simple calculation. The invariance with respect to H, is also seen from
theorem 1.

COROLLARY 2.

(12) H(O)=(-11(2) C(L) -

PRroOF. (12) is obvious from theorem 1 and (ii) with r=%—p. (12)

is also given by a direct calculation of (8) for T'=0.

Remark. From corollary 2 we can consider that the g.H.p. H(T)
corresponds to a generalization of a univariate Hermite polynomial of
even degree.

COROLLARY 3. The g.H.p.’s are orthogonal functions with respect to
a weight function etr (—TT').

ST etr (— TT)H(T)H(T) dT =332 k! (%) CALy

where H(T) and H(T) are g.H.p.’s corresponding to k degrees and 1
degrees zonal polynomials C(UU’) and C(UU’), respectively.

ProOF. From theorem 1 and (iv), we get
S etr (— TT')H(T)H(T)dT
T

— (_DWS etr (— TT") Le»-»(TT) L -*(TT") dT
T

mn/2

=T~ etr(—2)(det Z) P LePHZ) LA Z) dZ
r ( n ) z>0
"\ 2
—5,5.. nmmk!(_;i) CAL),
where the second equality is shown to hold by Hsu’s lemma.
COROLLARY 4.

13) [H(T)|= <1;—> CL,) etr (TT") .

Here we consider the generating function of the g.H.p.’s. In the
univariate case the generating function is given by
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exp (—s*+2ts) = i H(®) sk .
k=0 k!

Herz [5] has given the generating function of the g.H.p.’s H(T) by
using an extension of a Hilbert-Schmidt kernel of a generalized Weber

function etr (—%TT’)Hﬂ(T). We give it in the following way.

THEOREM 2. Let S and T be mxn (m=n) matrices. Then the
generating function of g.H.p.’s 18 given by

14) S S etr (—SS'+2H,TH,S")d(H)d(H) = 31 53 PLT)CLSS))
om) Jowm) k=0 & n
k!<_) CAL)
2/«
where H, € O(m) and H, € O(n), respectively.
PrROOF. We prove this theorem by the uniqueness of a Fourier
transform. Multiply etr (+2:TM’) etr (—TT’) by both sides of (14) and

integrate term by term with respect to T. Using (1) and (2), the
left-hand side of (14) becomes

L.H.S.= ST etr (5TM') etr (— TT")
X S S etr (—SS'+2H,TH,S') d(Hy) d(Hy) dT
om)Jom)
=S g etr (—SS’)
o(m)J)om)
X ST etr (— TT'+2T(H/SH, +iM)) dT d(H,) d(H,)

— a2 etr (—MM')\

JOo(m)

Sm etr (20 H/SH;M') d(H,) d(H,)

— 7™ ety (—MM')SMOF1 (% _H/SS'H, MM') d(H,)
— 2 ety (— MM') JF(™ (% —8s/, MM'> .

On the other hand, the right-hand side becomes, due to (9),

R.H.S.= S etr (2iTM") etr (— TT') 31 51 HLTICLSSY) 47
' S R(2) e

S C.(SS")

S etr (2iTM’) etr (— TT")HA(T)dT
: k!(%) cuL) °*
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_ o5 G(SS)

2™ etr (— MM')C.(— MM")
= (%) C.(L)

=™ gty (— MM') F™ (%, —S8s, MMr) ,

which equals the previous expression. Q. E. D.

Remark. Corollary 1 is obvious from the orthogonal invariance of
the orthogonal measure and theorem 2.

COROLLARY 5.
F( mn k)
5 +
mn
r(%)

ProoF. To prove (15), we need the following equality whlch was
given by Khatri [10],

(15) 3 H(T)=(—1) etr (TT") 117',(”;2” e 2 —tr TT’) .

(16) SM etr (— R)(det R)*?(tr RY*C.(SR) dR

I (o oy L (matk+)
m(@; £) Fmat) C.(8)

where C.(S) is a zonal polynomial of [ degrees with partition z. Now,
from the definition of g.H.p.’s,

zH(T)—( 1" etr(TT’)S etr (—2iTU") etr (— UU") S C(UU") dU

= etr (1)
T

% SvSow etr (—2iTH'U") etr (— UU')(tr UU')* d(H)dU
1)

—1)\*
(,tm,.,, etr(TT')SUo,Fx(%; —TT’UU’)etr(— UU)(trUU'ydU,

which Hsu’s lemma shows to be equal to

=V ot (T17)
(%)

x SM F (% - TT'R) (det R)*~» etr (—R)(tr R)*dR
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Ms

=ﬂetr(TT') ) (=1)
r(3) "),

X S}M etr (—R) (det R)»-?(tr R)*C(TT'R)dR ,

-~
il
-

which is, in turn, seen from (16) to be equal to

mn
=(—1) etr(TT’)% S (;1)’ F<—27;:k+l> C(TT")
L)
M
=(—1)*etr (TT") FiFmT:;C) 1F1<n;n +k; 'rr;n — TT’)

where ,F is a univariate confluent hypergeometric function. If we set
T=0 in (15), from (12) and ,F;=1, we obtain

a” (%) ot =(mm)
COROLLARY 6.

(18) Sn BBl etr (Lrr)

(19) 53 —etr (—1) (25 7).

PROOF. (18) can be shown from the definition of a generalized
Hermite polynomials. (19) can be shown when we set SS’=1I, in (14).

We give a relation between the generating function of g.H.p.’s and
one of the generalized Laguerre polynomials. To give this relation, we
use the following form which is given when we exchange S to TT', Z

to —Z and 7:%—-1) in (v).

(20) det(I+2)™*| etr(TT'H, Z(I+Z)"H,) d(H,)
_ & s (DALP(TTCAZ)
3h> i . lzi<t.

COROLLARY 7. The relation between the generating function of the
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Laguerre polynomials and one of the g.H.p.’s is given as follows. If we
multiply =™ (det Z)"*etr (—SS'Z ') by both sides of (14), and integrate
it with respect to S, then we obtain (20).

PrOOF. Multiply =—™*(det Z) ™ etr (—SS’Z™") by both sides of (14)
and integrate it with respect to S,

L.H.S. =z (det Z)‘"”SS etr (—SS'ZY)

x S o )S o (—SS’'+2H,SH,T")dS d(H,) d(H,)
=(det Z)"*det (I+Z )™
X SO(m)S om etr (TT'H(I+Z~")"'H/) d(H,) d(H;)

= det (I+Z)'"/2S etr (TT'H, ZU+Z)HY) d(H) .
olm
On the other hand, from (4) and Hsu’s lemma, we get

RHS.=r (et 2)| etr(~55'27 5 5 LIICSS") g
3 AT
Kl ( 2 >‘C‘(I'")

5T TRCAL)
(—1) Le»-2(TTYCA(Z)

=2 %! CAL,)

which completes our assertion.

4. The Jacobian of the maximum latent root and integrals

In this section we give the useful transform and related Beta type
integrals.

LEMMA. Let S be an mXxm positive definite random symmetric
matriz. If we decompose S, so that

A
S=H H,
14
where H is an mXm orthogonal matrixz which has only (m—1) inde-
pendent variables hy, hy, <+, hny and V is an (m—1)X(m—1) positive

definite random symmetric matrix in the range A L,, >V >0. Then the
Jacobian of this transform is given by
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1

\/1—§'"2th ‘

J(S—2, H, V)=det(,I-V)

PROOF. See Hayakawa [4].

The following corollary is very important to give the density func-
tion of the maximum latent root.

COROLLARY 8.

1) S (det W) det (I— W)C,(1 W) aw
r(-m
_ I'n(a) I'n(p) 2 ().
"~ Tplatp) o (am+Fk) (a+p). CALa)

1
(22) S ( i_ﬁ wt)a_p jj; (1—wy) JJ; (w,—w,) C, ( “ . ) jj; dw,
>w2>"'>wm>0 . wm

— Fm(a)rm(p) Fm(%‘) (am+k) (a)z C(I )
I(a+p) e (a+p). "

Proor. It is well-known that the following integral holds,

a=p _Tw@n(p) (@)
23) Sbsw(detS) 08 as= L0 Ll DOl

To prove (21), we decompose S so that

4
S=H H'
AW

where W is an (m—1)X(m—1) positive definite symmetric matrix in
the range I,.,>W>0. Then the Jacobian is given by

1

Vi1-3k

J(S— 2, H, W)=am"m+D det ([,_,— W)

Hence the left-hand side of (23) becomes
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L.H.S.=S:Zf’"+’°—‘dzl S (det W)= det (I— W)c,(1 W)dW

I, _1>W>0
X S dyl"'mdhml
n 1-2 R

= 1 n-m/z (det W)a—p det(I_ W)C,<1 W) dW,
am+k F(%) I, >W>0
since
Sl Zitm+k—1 d21= 1+k and S ;l;l; d:;l n";'/: ,
0 am R
sV 1-EM (3

therefore, we have (21).
To prove (22), we further decompose W so that W=H, 4, H/ where
H, e O(m—1) and 4,=diag (w,, -+, w,). Then the Jacobian is

JW— Ao H)=_T]_(w,=0)) .

i<jsm
Hence, inserting these results into (21), we obtain (22), since

S d(Hl) _ n(m—n?/z
o(m-1

Fm._1< m'—l )
2

(22) is the same result as given in Sugiyama [9].

5. Non-central Wishart distribution

5.1 The probability density function of the latent roots of a non-central
Wishart matrix with a known covariance

In this section we consider the p.d.f.’s of the latent roots, of the
maximum latent root, and of the trace of a non-central Wishart matrix
with known covariance matrix Y. The joint p.d.f. of the latent roots
of a non-central Wishart matrix was given by James [7] as series of
zonal polynomials.

2
(24) il

zmn/zpm<ﬁ>1~m<ﬁ
2 2

) etr <——;—Z’"MM'> etr (—% A)(det A)w-p
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c,( —-%-A) C. (l):-iMM'>

- 2
x T (—2) 513 -
i<j k=0 =« k! (E’) C‘(Im)

However, (24) is not an appropriate form to discuss the p.d.f.’s of re-
lated statistics, particularly the p.d.f. of the maximum latent root 2,
when we use (22). We shall give another form of the p.d.f. of A.

THEOREM 3. Let X be distributed with p.d.f.,

1
=7 (det 25)""

Then the joint p.d.f. of the latent roots A of T2 XX'3~'2 is given by

(25) etr [—%S-I(X—M)(X—M)'} .

O ) () G
. Elgpzem)olg
k(g ew

ProoF. We decompose Y=2I"1"2X as follows:
27) Y=H AL

where H; is an orthogonal matrix with positive elements in the first
column and 4* is a diagonal matrix of square roots of the latent roots
A, 0y Apof ZTV2XX'S2=YY’ and L is an nXm Stiefel matrix satisfy-
ing L'L=1I,. The Jacobian of this transform is

2m. n.m(m+n)/2

)

where d(L) is a normalized Stiefel invariant measure with total volume
unity. Thus, inserting (27) and (28) into (25), we obtain the joint p.d.f.
of 4, H, and L,

(28) dY=

(det A) -2 ;E[, (2—24;)dAd(H,)d(L) ,

2™z ety ( - %Z' MM’ >
() TRE

(29)

2mn/2 Fm <_1_’&_
2

2

X etr (2 AP LLAR H AR LM'E)
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We integrate (29) with respect to H, and L. If we set L— H/L,
H,eO(n), then L'H,H/L=L'L=1I, and the Stiefel invariant measure
d(L) remains unchanged. Thus

_1_5 S otr (—.lAlﬂL'LAerfLAmL'M'z-lﬂ) d(H,) d(L)
2™ Jowmy Jrr=1, 2
=~1_S d(L)S S etr <——1-A1’2L’H2H,'L/1‘/2
2m Jyr=r, om Jow 2

+ H, A7 L HM 577) d(H) d(H) .

Hence we can see that the integral with respect to H, and H, is the
1

same form as given in theorem 2 if we set S=1/—7—A‘/2L’ and T=
J%Z"/ZM in (14), thus we have
752 ") {5
. E{gprem)eia)
SL'L=I g? k! 'n) C(L,) (L)
'(3).00-
1 . 1
Ay rw)o()
= v2 M)cC 2
=k=0;

which completes the proof.

COROLLARY 9. From (12) and (26) with M=0, we obtain the p.d.f.
of the latent roots of a central Wishart matrix.

5.2 The p.d.f. of the maximum latent root of the non-central Wishart
matrix

Recently Hayakawa [4] and Sugiyama [9], [10] have considered the
p.d.f.’s of the maximum latent roots of some positive definite random
symmetric matrices. Hayakawa [4] has obtained the p.d.f. of the maxi-
mum latent root of a non-central Wishart matrix ¥=1I, by using two
expansions of zonal polynomials such that

C(A+B)=>a;.C(A)C(B)
and '
C(A)C(4)=21b..C(4) .
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However, the explicit formulas for the a:, and b;, are not known. In
this section we shall obtain the p.d.f. of the maximum latent root of a
non-central Wishart matrix with known covariance without using a:.’s
and b:.’s.

THEOREM 4. The p.d.f. of the maximum latent root 2, of a non-
central Wishart matrixz of n degrees of freedom with known covariance s
given by

> "“((——)+>“<—MM>
LB yy M)
' (5+2)

(80) converges for 2,>0.

ProoF. Since the p.d.f. of the latent roots 4 is given by (26), if
we set L, =w;4, (1=2, ---,m) in (26) and integrate it with respect to
1>w,> -+ >w,>0, using (22), then we obtain (30). The convergence
of the series is seen as follows. From (14), we get

(520 s 5] .
thus
. (- (25
23D (ﬁf">.

- (n
(5+2),

and since (%) / (12"— +p> <1 for all «, the right-hand side is dominated

termwise by the series

<mn n

(oo 3 U2 (v
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o) 8+

=M et etr (22 1MM’> (n+2,).

Hence the series converges for all 2,>0, which completes the proof.

COROLLARY 10. The c.d.f. of the maximum latent root 2, of the non-
central Wishart matriz with known covariance is given by

o Hla<al = 2mn/21{:n((%)+p) etr (—g 3 M Jar
. H( A z-m)
*Sar(3) s (;p)‘

COROLLARY 11. From (12) and (30) with M=0, we obtain the p.d.f.
of the maximum latent root A, of a central Wishart matrix, which is the
same form as given in Sugiyama [9].

5.3 The p.d.f. of the trace of a non-central Wishart matrix with known
covariance

THEOREM 5. Let A be distributed with p.d.f. (24). Then the p.d.f.
of T=tr A=tr XX’ is given by

(32) We&(_%}wﬂ[')wmq

(32) conwverges for T >0.
PrROOF. We derive (32) from the inverse formula of the Laplace
transform g(t)=FE, (etr (—tA)).

m’/ﬂ
9(t)= “

() ()
2 2

x SM etr (—t4) det A"~ C,(4) JT (h—2,) d4

Z—I/ZM 1 k
T
- "3 ). (I,
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L et (— sz 51 () e sz(Z—l_’z.M> :

= g iz k! V2
Applying (13) for H, ( ) J_M ), we see that the series is dominated term-
wise by the series
1. o 1/n tt
t <_>: lMM') __(—) . <~— Im)
iz N AvIAGY

1 t—l -n/2
—etr (_z—lMM'> det (I—__I)

2 2
Hence, when R(t)=C sufficiently large, the series can be integrated term-
by-term with respect to ¢, the same being true for det<I,,,—-£2——1Im) ™ .

Since

1

1 So+ieo e”' t(—mn/z)—k dt _ T(mn/2)+k—1
(]

2m1
as the p.d.f. of T we have

— L etr(— Lz T
2""‘”1"( mn> 2
2
S — ey (7) E(EF)
X3 — H, .
& EDRE THF
H=).
The convergence of this series is seen as follows. Applying (13) for
sy . .
H,( ), we have a majorant series
VZ !
etr (Lxaor) 5 — L (L)'51(2) et
k=0 k' (mn) 2 L4 2 &
2 /k
=5 1 (L) eur (Lz-0aar)
= 5 () e (g

where the first equality is given by (16). Hence the series (32) con-
verges for T >0, which completes the proof.

COROLLARY 12. The c.d.f. of the trace of a monm-central Wishart
matriz with known covariance is given by
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(33) P{T<z}= p— z’"’T) etr (——%Z’“MM’)xmn/z
L=
N2 Jrn

COROLLARY 13. From (17) and (82) with M=0, we obtain the p.d.f.
of ¥ with mn degrees of freedom.

6. P(T, A)

In this section we define a new function P,(T, A) which is con-
venient to discuss the p.d.f. of the latent roots of a non-central multi-
variate quadratic form. We define P(T, A) as follows:

(34)  etr(—TT')P(T, A)
_ (=1 gg etr (—2iTU") etr (— UU")C(UAU") dU,

nm.n/?

where U and T are mXn matrices and A is an nXn positive definite
symmetric matrix. The polynomial P(T, A) has the following properties.

THEOREM 6.
(35) P(T, L)=H(T),
(36) P.0, A)=(~1) CAA)C.L)[C.(E)
) IPAT, A)|setr (TT")(% ) C(A)CAL)ICAL) -

PRrROOF. From the definition (34), we can easily show these relations.

COROLLARY 14.

- , = C(4)
(38) SO(MP,(TH, A) d(H)—SO P(T, HAH")d(H)= oI

PrROOF. From (1) and (2), (38) is obtained by a simple calculation.
THEOREM 7. The generating function of P(T, A)’s is
(39) So( )So( etr (—SH,AH,S'+2H,SH, A'*T") d(H,) d(Hy)

_ g S P(T, :) C.(SS")
= 1=
k! ( . >‘C,(I,,,)

?
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where H, € O(m) and H, € O(n), respectively. The series converges abso-
lutely.

PrROOF. We prove (39) by a direct method. By inserting (34) into
the right-hand side of (39), we have

RHS.=—L_etr(17) 3 53 (ZCE5)
k=0 = kl( ) C(I,,,)

X SU etr (—2¢TU")etr (— UU")C(UAU") AU

1 ' (=1 L ,
L er(rT) 3 > S S etr (—2iTU") etr (— U’
i k=0 (_fn,_) k! om
2/x

xXC(UAU'H,SS'H/)d(H,) dU

=_172_ etr (TT')S S S etr (—2iTU") etr (— UU")
v)om

0(n)

Xetr (2tH;SH, A*U") dUd(H}) d(Hs)

— So( )S etr (—SH, AH;S'+2H,SH, A" T") d(H,) d(H,) .
m),)0()

The absolute convergence is proved by the same way as in the proof of
theorem 5.

7. Non-central multivariate quadratic form

Recently, Hayakawa [3] and Khatri [8] have discussed the p.d.f. of
a multivariate quadratic form in the central mean case by using a zonal
polynomial expansion and have treated properties of some related statis-
tics. In this section we consider the p.d.f. of the latent roots of a non-
central multivariate quadratic form with known covariance, of the maxi-
mum latent root and of the trace of it, which may be used by the power
function for the statistical criterion of the spread of the population.

7.1 The p.d.f. of the latent roots of the non-central multivariate quad-
ratic form

THEOREM 8. Let X be distributed with p.d.f. (25). Then the joint
p.d.f. of the latent roots A of XAX' where A is an nXn positive definite
symmetric matrix is given by
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@ g )

P.(LE-WM, A") C.(%A)

x (det A)m/»-» ;l;]'j (2,—2;) g‘l 2 p
! <E>.C'(I’")

Proor. If we set XA”2=Y in (25), then dX=(det A)""*dY. Hence
the p.d.f. of Y is given by

etr (—l}:—‘MM'>
2
27)™" (det Z)" (det A"

and XAX'=YY'. Therefore, the latent roots of >-2XAX'3-2 are the
same as those of X-'2YY’'Y-'2, If we use the decomposition (27), i.e.,
W=H A" L'=3"'Y, then the joint p.d.f. of 4, H,, and L becomes as
follows,

(41)

etr (-%}:—1 YA +3 YA—lM')

2mgm?/ ety ( — —;-2 MM’ )

Xetr (=T A" LA LA+ HAR LA™ M z7).
2

If we set L— H/L, H,€O(n), then L'H,H/L=L'L=1I, and d(L) remains
invariant with respect to H;,. Thus the integral with respect to O(m)

and O(n) is the same form as given in theorem 7 with S=%A‘”L’ and

T= LZ“”’M. Hence

V2
_1_S S S etr (-lAmL'H,A-!H;LM+ HIA‘”L'HzA-””M’E“/’>
2™ Jrr=1,JomyJom 2

X d(H,) d(H,) d(L)

1 1
P,(__z-mM, Ao (L
= SL’L—I k=0 ﬁ n > < 2 ) d(L)
=Im k=0 ¢ (2
k! ( L >‘C,(I,,,)

Py Aol 1)

k= k!(—g)‘C‘(Im)
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which completes the proof.
COROLLARY 15. If we set A=1I,, then from (35), we obtain (26).
COROLLARY 16. If we set M=0, then we obtain the p.d.f. of the
latent roots of the central multivariate quadratic form XAX', which is
the same form as given in Hayakawa ([3], p. 196, (25)).
7.2 The p.d.f. of the maximum latent root of XAX'

THEOREM 10. Let A be distributed with p.d.f. (40). Then the p.d.f.
of the maximum latent root A, of A is given by

(42) — ( _,25 :(23 o etr (-_;_ 51 MM’> -
o L s-impg 4
5 By s
(5+2).

PROOF. The proof is done in the same way as that of theorem 4.

COROLLARY 17. The c.d.f. of 2, is given by

%)

gmonp (IZL + p> (det Ay

3

1

43) Pla<az}= etr (—EZ'IMM’> g2

. . P(A s )
“2ul® "
2 .

7.8 The p.d.f. of the trace of XAX'

As it is well-known that the trace of a matrix is invariant for the
orthogonal transformation, we have

T=tr XAX'=tr 4.

THEOREM 10. Let A be distributed with p.d.f. (40). Then the p.d.f.
of T=tr4 is givin by
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etr (—-%-Z’"MM’)

(44) Tmn/2—1

r (%) (det 24)™"

e EL )
X2k ,( > > V2
")
PROOF. The proof is done in the same way as that of theorem 5.
COROLLARY 18. The c.d.f. of T 1is given by

etr <——-;—Z“MM’>

(45)  P{T<ax}= Trmnsa
I )(det Ay
xg@( ) EP<~/I—Z’ 2M A- 1)
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