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. 1. Introduction

In the general theory of decision functions, we have a few necessary
and sufficient conditions for admissibility. For example, C. Stein gave
one in the game-theoretic formulation [1]. In the present paper, we shall
give a criterion for admissibility of decision functions using a theorem
concerning a topological vector space. '

2. Notations and definitions

Let (25 <#) be a sample space of points z, where Z is a o-field of
subsets of .27 and suppose that x is distributed in 2 according to some
unknown member of a given set . of probability measures p, (6 € 2).

Throughout this paper we assume the following :

Assumption (A). The action space A is metrizable, locally compact
and o-compact.

Assumption (B). The loss function w(4, a) is lower semicontinuous on
A and w(d, a)=0 for every €2 and a € A.

Assumption (C). Every p,(6 € 2) is absolutely continuous with respect
to a o-finite measure . We denote the density dp,/dy by f(-, 0).

Let Cy(A) be the totality of bounded continuous functions on A vanish-
ing outside a compact set of A with norm ||« =sup |a(@)|. Let M(2)

be the set of all bounded <Z-measurable functions with norm |[|f||=ess. sup
| f(x)| and & the set of all probability measures on A. A decision func-
tion ¢ is a mapping of 2 to F# : x—4(-; x) satisfying SAa(a)c?(da; x) € M(Z)

for all @ € C(A). We denote this integral by deca. Let 9 be the space of
decision functions and E(Z?) be the linear subspace in L'(-2°) spanned

by {f(x,0):0¢€R2}. We write S s(x) f(x)du(x) by fos for f e E(FP).
A topology with neighborhoods
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Vio*:e, fi, @i, 1=1,2, -+, n}
={5: Iﬁoaoai_fic)a*oai l <E, ":=1y 21 tty ’n}’

where a; runs through Cy(A) and f, through E(Z), will be called the
regular topology =. Henceforward all terms on topology will be used in
this sense unless the contrary is specified.

Under these assumptions, the risk function

70, 9)={ | w0, o(da; )(a, OYau(w)

can be defined for every 6 and .

Let U be the space of all numerical functions on 2 topologized by
the topology = of pointwise convergence on 2. We denote by M the set
of all a priori distributions on 2 having as its carrier a finite subset of
2. In particular we denote by &, the a priori distribution satisfying
§({6h)=1.

By Assumptions (A)~(C), 7(4, ) is a lower semicontinuous function
of & for every fixed # and so, for any &e ¥, Safr(e, 0)dé&(#) is also lower
semicontinuous with respect to d. Hereafter we denote this integral by
7(§, 8). An a priori distribution in % can be also considered as a con-
tinuous linear functional on (U, ) putting &( f)=s‘7 f(0)d&(o).

A decision function 6* is called admissible if (8, 8)<~(8, 6*) for all ¢
implies (8, 8)=7(0, 6*) for all 4.

Throughout this paper we denote by S” the closure of S( c9) for the
regular topology = and by H the closure of H(c U) for the topology .

3. Results

Let Y be a topological real vector space and L be a convex family of
linear functionals on Y.

THEOREM 1. Let C be a closed convex subset of Y and s, be an element
of Y. Suppose that C and s, satisfy the following assumptions :
Assumption (1.a). Ewvery f(€ L) is lower semicontinuous on C.
Assumption (1.b). There exists fo € L) such that a set {s:fi(s)<u}nC
is compact for all u<oo. :
Assumption (1.c). For any se C, there exists f € L such that f (s0)<
f(s).
Then there exists f*(€ L) such that f*(s))< lal;lct" S*(s).

PROOF. Put H,={s:f8)<fus), f8)Sf()}INC for feL. At first
suppose that H,#¢ for all f. Because of lower semicontinuity of f, H,
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is closed. Suppose that {H,: f e L} has the finite intersection property.
Then we have ffJL H,+#¢ since H, is compact by Assumption (1.Db), and
H,cH, for all felL. sefOLH, implies f(s)< f(s)) for all f e L, which
contradicts to Assumption (1.c). So there must exist finite members of
L*, say fi,fs +++, . such that 6 H;=¢. Hence, for any s€C, there
exists f; such that s¢ H,, whicl;:hows

(LD fls)<fils) or  fis)<Sfis) .

To any s€ Y there corresponds a point T(s)=(f«(s), fi(s), * -+, fu(8)) of
R, The set Q={T(s):scC} is convex since C is convex and f; is linear
for all =0, 1, ---, n, and by (1.1) the point 7(s,) is a boundary or an
exterior point of Q. If T(sy) is a boundary point of @, then there exist
8, €C (n=1,2, --+) such that T(s,) € V,.(T(s)) NQ, where V(p) is an e-
neighborhood of p. We have

s, € {s:|fi(s)—fi(sy) | =1/, ©=0,1, ---, n}NC
C{s:fl8)=fu(s)+1/n}NC
c{s:f(8)<fi(s)+1}nC  for all n.

Hence, by Assumption (1.b), the sequence {s,:m=1,2,---} has a point
of accumulation s* € C and because of lower semicontinuity of f;, we have
fi(s¥)Z f(s)) for all 4=0,1,2,---, n, which contradicts (1.1). Hence
T(s,) must be an exterior point of @, that is to say, there exist n+1 reals

b, by, - - -, b, such that S1b,=1, b;=0 for all 4, and 31b, fis)<int féobi £4s).
=0 i=0 8¢ =

iS‘_,bi f: is also included in L. Putting f*= 31b,f;,, we obtain the desired

=0 1=0

result.

If there exists f such that H;y=¢, we have fy(s)> fi(sy), or Flo)> F(s)
for any seC. Putting T(s)=(f«s), f(s)), Q={T(s):s€C}, the proof is
immediately obtained by using the same method as in the case of H,#¢
for all f.

We note that this theorem is similar to the Mazur’s theorem but a
little different since we restrict the class of linear functionals and assume
(1.b) [2].

Using the above .theorem, we shall prove two theorems on admis-
sibility.

For this purpose we assume the following:

Assumption (2.a). We consider the class 9° of decision functions
satisfying (6, 8)<oco for all 4.

Assumption (2.b). lim inf w(d, a)=co holds for all 42, where

n—ooo aeE,
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E, E,, --- is an increasing sequence of compact sets covering A.
Assumption (2.c). There exists 6, ¢ 2 such that Ds, is equivalent® to
o
THEOREM 2. Under Assumptions (2.a)~(2.c), a mecessary and suf-
ficient condition for a decision function 3, to be admissible in 9D is that,
SJor any closed convex subset F of 9° satisfying r(-, &) ¢ {r(-, 8):6¢€ F},
there exists & € M such that

r(€, 0)< zng r(¢, d).

PROOF. The proof of necessity is as follows. H is considered as the
convex set of continuous linear functionals on (U, r) as was remarked in
Section 2. We denote by K the set {r(:, d):d ¢ F}. Consider an arbitrary

admissible 4. Now, putting Y=(U, z), C=K, L=H, 8,=34, and f,=§,
in Theorem 1, we shall prove assumptions of the preceding theorem hold.
Assumption (1. a) is clearly satisfied as was stated in Section 2. As for

Assumption (1.b), it is sufficient to prove that {r(-, 8): (6, 0)<u, o6 € F'}
is compact for r for all u<oo since we have for an arbitrary positive e,
(2.1) {h: h(8)=¢,(h)<u, h € K}

C{h:h(0)<u+e, heK}

={r(-, 0): (6, O)<u-+te¢, 6 € F}.

For this purpose, first we shall prove that the set {6: r(6, 6)<u} is
relatively compact for the regular topology =. According to LeCam, a
necessary and sufficient condition for S(c9) to be relatively compact for
= is that, for a given ¢ (>0) and g € E(Z?) with g(x)=0 for all z, and
[lgll=1, there exists a€CyA) such that 0<a(a)<1 for all a€ A and
godea>1—e for all 6¢S [3]. Now let E|, E,, --- be compact subsets of

A such that E,CE,,, for all i and iGE,:A, and let a, €Cy(4), i=1,2,
=1

-+« be such that 0<a,(a)<1 and a(a)=1 for all a ¢ E,.

Suppose that {d: (6, d)<u} is not relatively compact. Then, by the
LeCam’s criterion stated above, there exist a positive ¢, and p-integrable
g€ E(Z) such that g(x)=0 for all z, ||g||=1 and 4,¢€ (6: 74, 6)<u}
(n=1, 2, .. .) satisfying

(2.2) godyea,<l—¢g, for all n.
By (2.2) we have

2.3) ga,,(E,f; 2)g(@)dp(z)ze for all n.

1 The term “equivalent” is used here in the sense of Halmos ([4] p. 126).
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Put dv=gdyg. From (2.3) and J.(E;; x)<1, we have
2.4) 0<inf »(S,) (=, say),

where S,= {x: 0.(Er; w)g—;—} . By Assumption (2.c¢), v is absolutely

continuous with respect to p,. Hence, there exists 1>0 such that »(S)<e
for every measurable set S for which p,(S)<2. So we have inf p,(S,)=2

([4] p. 125, Theorem B).
Hence we obtain

(00, 82 Ss SE w6y, @) 6:(da; ©)f(x, O)dulx)

v

[, 1. nt wio, ) adas 0)£(, 0duta)

e
n aeE,

I

[, (nf w0, @) 0.(ES; 2)f @, 60du(@)

n acEf

v

_;9_ inf w(ﬂo, a)poo(Sn)

acE

g% inf w(6,, a)A.

aeE;

By Assumption (2.b) the right hand side tends to oo as » tends to oo.
Consequently we have

(2.5) lim 76, 3,)=oco.

This contradicts (6, 6,)<u for all n. The set {6: (6, 6)<u} is there-
fore relatively compact for z. Hence {d: 7(6,, 6)<u, 6 € F'} is also relative-
ly compact. Thus, by the lower semicontinuity of (¢, d) as a function of
4, we have sup r(@, 8)<oco for all 4, where Z={d: r(6) d)<u, 6€ F}.
Hence the set {7(-, 8): (6, d)<wu, 6 € F'} is relatively compact for = since
all its elements are contained in the product of the intervals [0, sup (0,
0)(<0)] (9 € 2). Consequently {r(-, d): r(6,, )<wu, 6 € F'} is compact for z.
Hence by (2.1), {h: h(8)=5&(R)<u, h € K} is also compact for r.

To show that Assumption (1.c) holds, take an arbitrary he K. If a
subset H of U satisfies that, for every g€ H, there exists a g* ¢ H such
that g*(0)<g(6) for all 8 € 2, we shall say that H has the property (W)

[8]. We shall show that K has the property (W). Let V(k: 8, -, 0, ¢)
be a neighborhood of A for the topology r such that

V(h' 01+, On, 5)—'——{9: Ih(oi)—g(at)l <¢1=1,2,---, n}°
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For any finite subset J={4,, 6,, ---, 6,} of 2 and positive integer m, we
define H(J, m) as follows:

H(J,m):{a:r(-,a)e V<h:00,01,---,0n, ;)}np

Since h € K, H(J, m) is not empty and it is clear that 6H(Ji, m;)#¢ for
any Jy, -+, J, and my, .-, my. ~ Since H(J, m)cC{d: r(6y, 6)<h(6)+1},
H(J, m) is compact for n. Hence we have Jﬂ H(J, m)#¢. € H(J, m)

implies 7(4, 5)§h(0) for all e 2. This & is clearly contained in F and
therefore K has the property (W). Since 4, is admissible and »(-, &, ¢ K,

there exists ¢ such that (@, d,) <@, 5). Thus we have (@', ) <h(#'),
that is to say, &,(6,)) <&, (k). Assumption (1. c) is therefore satisfied. Hence,
applying the preceding theorem we can prove that there exists £¢ ¥
such that (¢, d,)< in}' r(§, 9).

The proof of sufficiency is obvious. Let §, be a decision function
satisfying the statement of the theorem. For any § (r(-, d))=r(-, d)), there
exists & € M such that r(&, d,)<r(§, 6) since a set {4} is convex. So §, is
admissible. This completes the proof of our theorem.

A theorem similar to Theorem 2 can be obtained when 2 is topologized.
Let M* be the totality of a priori distributions on 2 satisfying £(0)>0
for every open set O. M* is clearly convex.

In addition to Assumptions (2.b) and (2.c¢), we assume

Assumption (3.a). The parameter space 2 is locally compact, s-compact
and metrizable,

Assumption (3.b). The set {r(-, 6): d € D} is equicontinuous as func-
tions of #, and instead of Assumption (2. a),

Assumption (3.¢). We consider the class 9" of decision functions on
2 such that sup r(9, 8)<oo.

Let U* be the subset of U consisting of all continuous functions on
2 such that sup| f(8)| <. U¥*is a topological vector subspace of (U, 7).
8

Let z* be the relativization of r to U* and henceforth we shall denote
by H the closure of H for the topology *. By Assumption (3.c) we have
{r(-,0): 0e D'} U*.

If, for any &e.H*, we put e(f):Sg F(6)d2(®) for all f ¢ U*, then &

is additive on U* and moreover we get the following lemma.

LEMMA 1. §&(€ M*) is lower semicontinuous on {r(-, 6):d¢€ 9'}.

PROOF. We write E={r(-,0):6¢€ 9'}. Since &(fy)<oo (f,€ E), there
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exists a compact set G(C®) such that Sac J(0)ds@)<e. As E is equi-

continuous, so is also E. Since the topology of pointwise convergence
coincides with the topology of uniform convergence on compacta for an
equicontinuous family [5],” there exists a neighborhood V{(fy) of f, for the
topology t* satisfying

[, 7030~ a@ne0)<e for all ge VINE.

Hence we obtain

s—50)=| , £ios0)-| , 900+ 100~ o@zo)

<(. 70de@ te<2e  forall ge VFINE.

Since g € E implies g(6)=0 for all 8, we have Sac 9(0)dé(6)=0 and so the

second inequality follows. This shows that & (€ H*) is lower semicontinuous
on E.

THEOREM 3. If we take M* and ' instead of M and D°, we have
the same assertion as that of Theorem 2 under Assumptions (2.b), (2. c)
and (3.a)~(3. c).

PROOF. The proof o’ necessity is as follows. Let 6, be an admissible
decision function and F be a closed convex set in 9’ satisfying 7(-, &) ¢
{r(-,0):0¢ F}. Putting Y=(U*, t*), L=M*, C=[r(-,0):0€ F}, s,=5,
and f,=¢§, where &§ ¢ M* is arbitrary, we shall show assumptions of
Theorem 1 are satisfied.

It follows from Lemma 1 that Assumption (1.a) holds. As E=
{r(-, 0):6€ 9’} is the equicontinuous family and £,(0)>0 for every open
set O, there exists f,,(<o0), for each 6 and u(<oo), such that f(8)<pB..,
for all feE for which &(f)<u. Consequently the set {f:&(f)<u}nE
is compact for z*. Thus Assumption (1.b) is satisfied. As we showed in
Theorem 2, the set K={r(-, d):6¢ F} has the property (W). Hence, in
the same way as Theorem 1, we can prove that Assumption (1.c) holds.
Finally we remark that .#* is not empty. This is easily shown by virtue
of Assumption (3. a).

The proof of sufficiency is completely the same as that of Theorem 2
and so is omitted.
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