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1. Introduction and summary

The compound decision problem, called by Robbins [7], consists in
the simultaneous consideration of 7 decision problems which have an
identical formal structure. All the papers [1]~[11] except [8] treated
the continuous compound decision problem. Robbins [8] considered the
decision problem between the binomial distributions and the distribution
which is given by a unit step function. The problem of convergence
rate was treated by Hannan-Van Ryzin [4], Van Ryzin [13] and Samuel
[10] in the continuous case, by Johns [6] in the two-action case and by
Robbins [8] in the binomial case.

In this paper, we shall treat the compound decision problem be-
tween k41 (at most) m-variate multinomial distributions and present
the construction of the “best” simple symmetric solution and the exact
convergence rate of the asymptotically “good” non-simple solution, using
the different approach from that for the continuous case. This is an
extension of [8] and a modification of [1], [2], [5], [11] and [18] which
treated the continuous compound decision problem involving multiple
component decisions. '

We do not consider the sequential case (cf. [4], [5], [9], [10] and
[11]). But, in that case, a similar argument can be made by modifying
only the part of the estimation of the true parameter vector.

2. Simple symmetric decision function for the compound decision
problem

2.1. Multinomial compound decision problem. Suppose that we are
confronted with the following situation. There are (k+1) states of
nature, {0,1,--:,k}. We represent the state by the symbol 8, and the
set {0,1,---,k} by K. We do not know the true value of 4, but we
can observe a random variable X with the value range M={0,1,---, m}
(m=k), for which
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(1) Pr{X=i|0=4}=p(i,5), €M, jekK,

where (m+1)X (k+1) matrix P=(p(i,j)) is a known parameter matrix

satisfying the following conditions :

(2) oG, )20, 3, =1,
(3) P'P is non-singular.

Suppose that when #=3j and we guess that 6=1, we lose a(z, 5) with

(4) 0<a(t, S A(L ), for each 7,7€ K.

Let @ be the class of all non-randomized decision functions:

Q={d=(do, dh"‘, dm); dteK (7:=0, 1,"', M)} .

When #=j¢€ K, the loss suffered by using d=(dy, d;,---,d.) €D (i.e.
estimating #=d, according to the observation 4 of X), is given by

(5) (@)= aldu )P, 3),  GeK.

Now, we shall consider the following discrete compound decision

problem. Let » be a fixed positive integer and let X,=(X,,--

.+, X,) be

the vector of independent random variables, where for each X; we have

Pr {Xt=j}=p(j’ oi)r i‘:l’ 2’ e, M

and the unknown parameter vector 6,=(6,,---, 8,) belongs to the set

K*={6,=(0,---,0,); 0.¢K (i=1,---,n)}. The problem is
d € 9 that minimizes the average loss

(6) Ld; 0= 311, (d)=2 7,60)1(d),
where
(7) 70)=2 B u@ad), =01k,

1, if =7,

(1, §)=0 ={ .
(4, ) =3, 0, otherwise.

to find a

The decision function of this type is called a simple symmetric (abbr.
by s.s.) solution for the compound decision problem (cf. [3], [11]).

2.2. Construction of the best s.s. solution. We shall consider the

vector-valued function on 9
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(8) r(d)=(r(d), r(d), - -, r.(d))=Ud)Q,
where
Ud)=((d), l(d), -+, L(d)),

- each element of which is given by (5) and @ is the generalized inverse
of the matrix P. By the assumption (3) @ is uniquely determined by

(9) Q=(P'P)"'P'.
Let S, be the m-dimensional simplex
Sm= {8=(80, 8,000y sm-—l) ’ sigoy gszél} .

For any s€ S,, we put

10 r(d;8)="5 sr(d)+1—8— - —sn)ra(d),
11) r(8)= ‘li’t:ig rd;s),

(12) (dY={8€8,;r(d;s8)<r(d;s), for all dc D}.
Then it is easily seen from (6), (7), (10) and (11) that

(13) 8'=8(6,)=7(0,)P' € S,

and

(14) l(d;6.)=r(d;s"

(15) 1.(6.)= ﬁi_rql) L(d; 6.)=r(s).

THEOREM 1. Set

(16) (G;i)=1{8€Sn; wls;8)<wih;8), for all he K},
where

a7 w(j; 8)=3 ald, oG, alh;8), €M, jeK,
(18) q(k; 8)=q(h, m)— gsi[q(h, m)—q(h,9)], hekK,

and q(i,7) is the (i,7) element of the matrix Q given by (9). Then, for
every de Dy={d € D;{d)+¢}, we have

(19) (dy=(dy- -+, dn)=N(di3 ).
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Using the above proposition, we can construct the subset {(d) of
S, for every d e 9, Therefore, if we know the true value of s°=s(8,)
defined by (13), we can find such a d'=d(@,) € 9, that s'c {(d’>. This
d gives the minimum attainable risk.

PROOF. Since
r(d; 8)=r(d, d;, - -,dm;s)=‘§=owi(dt:s) ,
by the definitions (15) and (12) the relation
(dy> A(di; i
is evident. Therefore, we shall show the inverse inclusion. Let s € {d)
={dy, dy,---,dn)>. Then, for any d=(d,, d,,---,d,), we have
r(d;8)<r(d; s)
or equivalently,

> widi; S 3 wldi8).

When we put d,=d, (t=1,2,---, m) especially, we have
wo(do; 8)<wy(dy;8), for any dye K.

This shows that se€ {dy;0>. In the same way, we have se€{d;;?),
1=1,2,---, m.

2.3. Approximate s.s. solution. We shall show the following:
THEOREM 2. For any 6,€ K* and any s € S,, we have

(20) L(d;8.)~L(6.)<B|ls—5(6.) |,

where d € 9, is such that s € {d), {d) being defined by (12) and

k

(21) B=2A max 3 |q(i, m)—q(t, 7)|
0sjsm i=0
and the morm ||-|| on S, is given by
m—1
(22) ”8_§”=§){3i_§tl'

From this theorem, when we know the approximate value 8 of s°
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and we use a decision function d such that 3 e (d), the risk l.(d, 6.)
we suffer is not larger by more than B||8'—&|| than the minimum aver-
age risk 1,(8,)=r(s").

PROOF. By the definitions (10) (11) (12), it is easily shown that for
any 8 € S, there exists at least one d*=d(s) € 9, such that s € {(d*) and

r(8)=r(d*;s8). Furthermore, for any s, 8¢ S, there exists d, d ¢ 9, such
that se (d> and §e<d). If d=d, from (14), it is evident that the

relation (20) holds. When d+#d there exist a finite number of d;, d,,
coo,di_; € 9, such that

s=(1—a)8+ad € {di.,;)N<d;), i=1,---,1,
where 0=a,<a,<- - -a;<a;;;=1 and d,=d, d;=d. Since
r(d'; 8%)=r(d*; 8%)

for any s* e (d')N<{d*), we have
r(d; s)—r(s)=r(J; 8)—r(d; 8)+r(d;8)—r(d;s)

=r(d; 8)—r(d; )+ 3} [r(d:; 8)— r(ds; 8]

=r(d;8)—r(d; §)+§ [r(d;-.; 8)—r(d;_; 87")]

=3 Ge—s) lrald) 1D+ 5 3 (6578 [radic) —(di)]
Noticing (4), (5), (8), (21) and (13)~(15), we get the inequality (20).

2.4. Example. Let

1—p P 0
@) P=| p 1-2p »p (0<p<%, p;b%)’
0 D 1-2p
0 i=j,
.7 j =1'—6 ={ B .
a(t, J) il S

Then (9) becomes

1 1-3p+p* —p(1—p) ’
Q=P =Gy | —P1-» A-pF —pl-D)
s —p(1—p) 1-3p+9p°

Therefore, for q(h;s) defined by (18) we have
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q(0;8)= [P+ (1—3p)s,—ps] ,

S S
(1—p)(1—3p)
q(l;s)=1—_1—3—p;[—p+sll ,

1

9 )= I=3p)

[1-3p+p*—(1—3p)si—(1—2p)s,] .
For (17) we have

wy(0; 8)=p(0,1)q(1; 8)+(0,2)q(2; s)=_—f£_pg_T&) ’

wil; )=l (1= 8p)s—pal

wy(2; 8)=wy(0; 8)+wi(l;8).
When 0<p<1/3, we have

wy(0; )< w(l; 8) & s, <p+ 1;31’

80’
wy(l;8)Swy2;8) = s=p,

w(2;8)Sw0; 8) < s Zp+ 1P

So.

If 1/3<p<1/2, we have

wi0; 8)Swi(l;8) &> 8, =p+-——Lsg,,

1-3
2
wy(l; 8)Swy(2;8) s =p,

wi2; ) <wi0; 8) < s, <p+ 2P

Sy .
Thus we can obtain the following partition of 2-dimensional simplex
S, (see Fig. 1-a and -b).

Along the same line we have the following relations and the Figs.
2 and 3.

wi(0; 8)Swi(1;8)
< p1—=2p) . p(1-3p) <0<p<l>

S1-sprap | 1-sp+3pt 3
= (1—2p)* (1—3p) 1 1
> _PL—2p p2—ob) s, <—<<—)
27 g 130" | 1—3p+3p° 3 ~P<3
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wi(l;8)=wi(2;8)

> p(1—=2p) . p(1—8p) 4 (0 _1_>
%27 aprsp  1—sptap <P<3

s
< p(1-2p) | p1-3p) ,_ (l _1_)
SS7 gprap T1-gprap Y 3PS
(25 9)Sw,(0;8) ¢ 8< (0 <p<s).

Combining Figs. 1~8 according to the relation (19), we have such

partitions of S, as is given in Fig. 4 when 0<p<2— +3 and as in
- Fig. 5 when 1/3<p<3/8.

Sy

N (o<p<%)
' s=p+ 1;:’ Sg
{1;0
€0;0) N\
? \A\
AN
AN
\\
0 1%
(2;0)=¢
Fig. 1-a
8§ .
1IN
N (o<p< -:1,‘—)
5= Bl(1—2pP+(1-3p)1 -5,)] e H(1=2pP+(1-3pX1—s,))
! 1-3p+3p ! 1-3p+3pt
o PO=200+(1=3p)s,] 5. HA=20+1=3p)5]
'P ST T 1 prap
P2=Tp+4p%)
1-3p+3pt L ‘
£l
prapp | T
— . . H1-2p)
1-3p+3p° @1 Do |
0 1 1% 0 1 1"
2 2
Fig. 2-a
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Sy

3 1)
('E<P< 2/

&L
0
1; =¢
Fig. 2-b/
N N
1 1
0<p< %)
_ 1-3p =
1-2p §=(1-2) =175 0% 2;2) s=-29-155%

. 15, ° 1
©;2=¢ ©:2=¢
Fig. 3-a Fig. 3-b
5 St
1 1
0<p<2~-v3)
{L,L,1)
1-2p
1,2,2),
se=Tpap) @22
1-3p43p
»
£0,2,2)
0 1 1% 0
2
@\ @
ooy | €0
a0,y [T O.L 5 =g
<')291> <.,0,2>
a,1,2)

Fig. 4 Fig. 5
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3. Non-simple decision function

3.1. Estimation of the proportion vector. When both the true
value and an approximate value of 8’ are not available, we must con-
struct an estimator § for 8°’=s(@,). If this be done, we can use the non-

simple decision d which is defined by
(24) d=d, if $edd).

When the true parameter vector is 6,, we shall denote the expected
average loss suffered by using d by

ru(d; 0)=E(l.(d; 6,)|6.}.
Then from the theorem 1 we get
(25) - ru(d; 6,)—1(0.)<BI(8;6,)
where

7(8;0.,)=

ey

I s—8'|| dF(s)

Sm

-

m—

SINPERIEI A0

0Jo

I

m—1
i=0

and F and F; are the distribution function of §=(8,,---,8,_,) and the
marginal distribution function of §;, respectively.

In order to obtain an estimator & for s'=s(8,), we may consider the
following random vector

(26) Z=2X)=(Z0 Z*+, Zn-)
where
@7) 2,=Z,(X)=3 w(X.—j)

={no. of 7; X,=j, i=1,---,n}.
We put
M;={i e M;p(i, 5)>0},

m;={no. of elements of M,-}=iE:Sgn [p(2, 5],

p(9)=(,5);1€ M),
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K;={j e K;0<p(,J)<1},
K¥={je K;p(i,5)=1}.

Then, when the true parameter vector is 8,, random vector Z can be ex-
pressed as

k
Z=2 Yi,
j=o

where §;=(yi;;1€M;) of y,=Woj, Y15°* ) Ym-s,s) is distributed as m;,-
variate multinomial M(n}{; p(5)) and ni=ny,8,). Since

Zi= 2 Yy= X Yu+ 2 Y

JeK JeK; JeKj

and the marginal distribution of y,; for j € K, is the binomial B(n!; p(4, 7)),
we have :

E(Z|6.}= 3 Ely,|6.}= X nip(t, j)=ns!
jeK JeK
and

E{IZ,-——ns?I}éj(ZIJ(‘E{Iy,-,—n}?p(i,j) [}
=IZ P(’n? ’ p(i’ J)) ’
‘Ki

where »(n ; p) denotes the mean deviation of the binomial B(n ; p). When
we set

(28) §=—17,

3|~

8 is an unbiased estimator of §°=s(8,).

3.2. Exact convergence rate. First, we shall state lemmas without
proof (cf. [12]).

LEMMA 1. Let v(n, p) be the mean deviation of the binomial B(n;p).
Then, for pn>1, we have

v(n, p) <24, exp "‘("';;p) {\/l;pn+ “1_]0},

where
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1+2
a(n, p)=

(p——fz-)(l—p) .

LEMMA 2. For any positive integer | and any positive numbers
Ay Ay vy Ay, W have

é})«/a_tg«/(lﬂ)gdi .

From the lemma 1 it follows that for every » such that ninil Enin
€ eK;
njp(i, j)>1, we have

(29) Ef|zi—nsi|} = P2y v(nj; p(i, J))

<24, exp S22 jfu;i{ s M Vl_—m}’

where

(30) a(n ; 8,)=max max a(n}, p(t, j)).

ieM JcKi

Then by the lemma 2, we get
(B1) 7(5;0,)="37(:;6)=13 E(| Z,—ns)))
i=0 n i=o

<2 aew (S o b

<2 e 200 {5 18 S TS

where
k;={no. of elements of K;}
= >3 sgn [p(t, /)] sgn [1—p(, 5)] .
Thus from (25) and (31), we have the following

1

THEOREM 3. For every 0,¢ K" and every n>———— —
' min min 7,(6.)p(3, J)
ie eK;

we have

i;6,)— G G
(32) ruld; 0)—l(O) S —p=t 5
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where
(33) C,=24,B exp [M] ISk, - fmax >y 1=PG:9)
n i=o iy pli, g)

34)  Cy=24,Bexp [M] \/'f‘z'lkiz‘, S S
n =0 jek; 1—p(1,7)

and ﬁzé(X,,) 18 the mom-simple decision given by (24) with (26), (27)
and (28).

We shall now examine how large the uniform bounds given by (33)
and (34) are for the model given by (23) in section 2. Table 1 shows
the results for p=0.05(0.05)0.50. The bounds are given by

Ci=J(6,)x (11, , 1=1, 2,
where

J(6,)=44,A exp 21 0n)
n

Table 1.

» (1) (In) (IIL) l (Ily) (IIL)
0.05 67.500 28.249 | 2610.187 11.379 | 648.583
0.10 5.079 15.923 | 288.390 15.312 | 277.310
0.15 5.987 12.694 | 146.105 13.031 | 149.983
0.20 7.500 10.747 88.664 11.779 97.178
0.25 10.667 9.416 59.637 11.015 69.763

10.30 20.636 8.446 43.034 10.629 54.159
0.35 43.077 7.716 32.815 10.239 43.543
0.40 13.333 7.165 26.271 10.083 |  36.971
0.45 9.351 6.758 22.050 10.040 32.758
0.50 8.000 6.000 18.000 8.944 26.883

B 2 . .
<I)—ﬁ—g}§, i§0 la(,2)—qG, 5,

1 l_p(i’ j)
) = 2= g)
) \/Eok‘ o??gz T (%))

My)=4/ < 1
) ‘/Eo’“;?:xi 1-2G,7) ’
W)=Ox L) (=1,2).

For small p these bounds are considerably large. On the other
hand, the three distributions in the model (23) become more and more
distinguishable from each other so that we may take smaller values as
C, and C,.
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Thus, the above example shows that there is possibility of improving

the theorem 3.

4.
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