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1. Introduction and the main result

Let a real-valued random variable X have the distribution function
(df) F(x; 0) where 0 is a scalar or a vector parameter. The situations
where one wants to estimate g(8)=F(a; ¢) with “a” known on the basis

_of a random sample of size 7, arise in fields of application and have at-
tracted the attention of the statisticians from time to time. Using the
theory of transforms, Kolmogorov [2] has investigated some problems
of this nature for the normal distribution. Laurent [3] has treated
the problem for the two-parameter exponential distribution by using
conditional distributions. Patil [4] has provided the results for the
generalized power series distribution using power series expansions where-
as Tate [6] has solved the problem in generality for distributions with
scale and location parameters, where he writes the unbiased estimates
as unknown functions in integral equations of the convolution type and
recovers them by integral transform methods and further applies the
results obtained to a few specific distributions. In this paper, we solve
the problem of estimating g(0)=F{(a; 0) for several of the important df’s
F(x; 6) which admit sufficient statistics by using a.uniform technique
made available by the existence of the sufficient statistics. We have in
particular the following

THEOREM. Let %y, %, -+, %, be a random sample of size m on the
distribution function F(x; 0)=P(X<x) where x is real-valued and 0 is
either a scalar or a vector. Let t(xy, - -+, x,) be a scalar or vector statistic
sufficient and complete for 0. Then the conditional distribution function
of %, given t, ¢(a, t)=P(x, <a|t), is the minimum variance unbiased
estimate of F(a; 0) where “a” is a known constant.

PROOF. It is clear that because of the sufficiency of ¢,
39
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#(a, t)=P(x,<a |1)

is independent of ¢ and is therefore a statistic. Also

Eil¢(a, )]=E[P(zr,<a|t)]
=Py(x,Za)
=F(a; 0) .

Because of the completeness of ¢, ¢(a, t) is therefore the minimum vari-
ance unbiased estimate of Fl(a; 6) as the Rao-Blackwell-Lehmann-Scheffé
theorem now applies.

2. The normal distribution function

The probability density function (pdf) of the normal distribution
with the vector parameter 8=(y, ¢*) is given by

1
Ver-g

where —oco<p<co, and 0<¢’<oo. Three cases arise :

flz; 0)= exp [—(®—p)'/26"]  —oco<z<oco

2.1 The mean p unkmown, ¢ known. Without loss of generality
we may take ¢=1. Now the joint pdf of (x,, ---, x,) is

S(@y, 23y + 00, )= iflf(wi; 0)

= exp | — > (x;—p)'/ 2

( ) exp | =33 g

and we know that t(x, ---, z.)= nZ x;/m=2% is sufficient and complete
i=1

for p. In order to find the conditional distribution of x, given t, we
note that the joint pdf of (%, ---, x,_,, t) can be obtained as

_ n —n—! o
h(xy, « ) Tuyy t)—m—?);‘ eXp[ ; (w:—1) /2]

x exp| = {5 @~} /2] exp [ n(t—py/ 2]

since the Jacobian of the transformation is n.
Since the pdf of ¢ is known to be

% exp [—n(t—p)'/2],
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we get after some simplification

(1) by o, zaslt)= YLD exp [ - 5 Fov@—0) (2,02

W2z v
where ¢/—1=¢,;, the Kronecker delta. It is clear from (1) that the
conditional distribution of (z;, s, -+ -, %.-,) given ¢t is the multivariate
normal distribution with the mean vector (¢, ¢, ---, t) and the variance-
covariance elements o;; given by o,;4+1/n=4;;, the Kronecker delta, from
which follows that the conditional distribution of x, given ¢ is normal
with mean ¢ and variance (n—1)/n. Thus, the minimum variance unbiased
estimate of

e L0 e [y
Fla; ) =—=\"_exp[~(@—u/2}da

is given by

(2) #a, )=——\"_exp(—o/2lds

where
A=(a—t) V(n—1)/n,

a result obtained by Kolmogorov [2] by using a completely different
method which involves inversion of the heat equation

an_
at 0z
2.2 The variance ¢ unknown, p known. Without loss of generality
we may take p=0. We know that ¢= >}a? is a complete sufficient
i=1
statistic for ¢'. Further, we note that the transformation of (x,, -- -, ,)
to (x;, -+, Xu_y, t) is two to one with 1/2x, as the Jacobian of transfor-
mation. Writing
yi=t
and
yz ‘_‘yf:—l—x;c—l k=27 3’ ] n—1

we obtain the pdf of (x, ---, z,_,, t) as

h(xl, ey &gy t)= ( 1/21_71-0' )”(t_nzzlxz)—l/z exp ['—'t/20'2]

- < vzl,w )n(yi—n—xi—:)““ exp [—t/20"] .
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The repeated application of the result that

Swm (yz — 2 )k/de =yk+1B(ﬁ£ L)
— m m vm m 2 ’ 2

where B(m, n) is the beta integral with parameters m and n gives

Wz, )= LA ’1 (t—a2)™9"2 exp [—t/267]
(vamrr(52)

after integrating out x,_,, ---, x; between their respective ranges. Us-
ing the well-known form of the distribution of ¢ and dividing h(x,, t)
by it, we obtain the conditional pdf of x, given ¢ as

L $/2-1 <1_ 2 >(ﬂ-—l)/2-1
B( n—1 1 ) <
2 ' 2

h(z,|t)=

Noting that the distribution of «!|¢ for a given ¢ is the beta distribu-
tion with parameters (n—1)/2 and 1/2, we expect now ¢(a, t) in the
form of incomplete beta function. To be specific

1 n—1 1 .
R, ( , ) f a<0
24\ T2 ' 2 o<
11 : —
(3) d(a, t)= 1 - if a=0
1— ; A( ";1, _;> if >0
where A=da*/t and I,(m, n)=;g‘4(1—w)"‘“‘w"“dw is the incomplete
B(m, n) Jo .

beta function tabulated by Karl Pearson [5].
2.3 Both p and ¢* unknown. We have
t=(t1; tl)'_"(ﬁy E(wi_i)n)

as a complete sufficient statistic in this case. Transformation of (x,,
cee, X)) to (X, + ¢, Tuoy, ty, £y) 1S two to one since the interchange of «,
and z,_, does not alter the image point. The Jacobian of the trans-

k
formation is available as 'g (Xn—2,_y) 2. Writing C,=3](x,—%)' and
1

B,,=i (x;—t,) for 0<k<m—2 and solving t1=$ xz/n and i&,:ﬁ‘,(aci—tl)2
1 1
for x,., and x,, we find the Jacobian




MINIMUM VARIANCE UNBIASED ESTIMATION 43

(4) ' |J |= %(Zt,—2(:,._2—1;':_,)-1/z .
Thus the pdf of (x, -+, %n_y, by, t;) is available as
n(t,— )
B o, o )= oxp [ = MO [,
We may note that the ranges of ,, 2,, -+, £,_, can be obtained from

the fact that the discriminant obtained in solving the equations (4) must
be non-negative since z,_, and z, are both real-valued.
Using successively the easily verifiable result that

b*+4ac \*tv2 1 E+2 1
2 k/2 — - - —_ —
S(—a:c +bxr+c) da:—< ) 4/_B( 2 o ) a>0

where integration is taken over the range

(— ¥+ 4dac+b)/2a<x<(vb'+4ac+tb)/2a

and integrating out @, ---, 2, and dividing the expression so obtained
by the joint pdf of (£, t;) which is well-known, we get ultimately the
conditional pdf of z, given (¢, t;) as

_ 1 ,n(w —t )2 (n—2)/2—1
5) k@t t)=— YT 1——1—*—] .
( (1] (s ) B< "—2 _L) '\/(n—l)tz[ (n—1)t,
2 ' 2
Now, (5) suggests that the conditional distribution of e —t) for given

(n—1)t,

t=(t,, t,) is the beta distribution with parameters (n—2)/2 and 1/2 and
that the required minimum variance unbiased estimate is available from
a—t) and that the three
(n—1)t,

cases that arise are according as a<t,, a=t, and a>t, respectively. It
may be mentioned here that Kolmogorov [2] has investigated a some-
what similar problem for this case through a different approach.

the equations (8), except that now A=

3. One parameter gamma distribution function

Let the random variable x have the gamma distribution with para-
meters 8 and known m with the pdf

(6) S, O)=—7=—— 0,,1,( ) z™texp(—x/0) x=0.
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We know that in this case t=i} 2, is a complete sufficient statistic for
1

6 and the pdf of (x,, ---, ®,_,, t) may be easily obtained as
-1 —410) T ™1t — S )1
My, ++-, Xuoy, t)= )] exp (—t/0) '[:[ xP (e F‘T, x;)

where ¢>0 and with y,=t and y,=¥%;_1— %1, 052 Zy: for k=1,2, ---,
n—1. Integrating out x,_,, ._s, -+, 2; and dividing the integral by the
well-known form of the pdf of ¢, we obtain the conditional pdf of =,
given t as

1 X m-—1 X mn—m-—1 1
g ()3
(@:[0) B(mn—m, m) \ t t t
which brings out that in this case
(7) #a, t)=L(mn—m, m)

|
where A=a/t. }
\

4. Two parameter exponenfial distribution function

Let the random variable 2 have the exponential distribution with
parameter 0=(a, ¢) with the pdf

(8) f(=, a)=% exp[—(z—a)fs] xZe.

Three cases arise :

4.1 Location parameter a known and scale parameter ¢ unknown.
Without loss of generality we can assume that =0 in which case (8)
becomes.a special case of (6).

4.2. Location parameter a unknown and scale parameter o known.
Without loss of generality we can assume that ¢=1 and the pdf in
(8) now reduces to exp[—(x—a)]. We know that {=min(x,, ---, z,) is
complete sufficient for «. Further, we note that in this case the range
of the distribution depends on its parameter «. It is proved by Huzur-
bazar [1] that if the range of the distribution with pdf f(x) depends
on its parameter a« and a<x<b (b known), then the conditional distribu-
tion of any sample member x;, 1=1, 2, ---, n given {=min (2, - -+, &,)
is of mixed type and its pdf 15 given by
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n=l @) s,
n S f(x)dx
h(x|t)= ¢
—1— x,=t.
n

Thus for the case under consideration we have

(1—%) exp[—(@—t)]  m>t

h(fﬂxlt)= 1
- n=t

from which the desired minimum variance unbiased estimate comes out
to be

1—(1——}7) exp[—(a—t)] a>t
(9) #a, t)= % a=t
0 a<lt .

4.3. Both a and o unknown. This case has been dealt with by
Laurent [3] in detail following the approach similar to ours.

5. Two parameter rectangular distribution

Let the random variable 2 have the rectangular distribution with
parameter =(a, 8) with the pdf

(10) f@ =—Y _  a<w<p.
B—a

Two cases arise :

5.1. FKither a or B unknown. Without loss of generality we can
assume a known and known to be zero. Then (10) reduces to f(x, f)=
1/8, 0<z<p. We know that t=max (x,, ---, #,) is complete sufficient
for B and following Huzurbazar [1] we get the conditional pdf of
given t to be

n/t
h(z\|t)=
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from which

(11) #(a, t)=

5.2. Both a and B wunknown. In this case, t=(t, t;) where t,=
min (x,, ---, %,) and ¢,=max (x,, ---, &,) is complete sufficient for 6=
(@, B). Following Huzurbazar [1] we get the conditional pdf of x, given
t as

(

L xl__—__t1
n
h(z,[t)= < n=2, _1 tL<z, <ty
n tg"‘tl
L xl=t2
"
which leads to the desired estimate
0 a<t,
__1_ a:tl
(12) da, =1 "
’ 1 . (n—2)a—t)
—_t t t
n + n(t;—t,) 1<e<t
1 a=t,

6. Generalized power series distribution

Let the discrete random variable x have the generalized power
series distribution with the series function f(8)=3 a(x)#*, summation
being taken over a set T of non-negative integers, and hence the
probability function is given by

| i
13 z, 6)=2@F o p
(13) o 70)
It is shown by Patil [4] that t=é x; is complete and sufficient for 8
1

and has the generalized power series distribution with series function
[f@OI"= b(t, n)f, say. It can be easily seen that the conditional prob-
ability function of z, given ¢ is given by



(14)
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[a(xl)ﬂ‘l ] [ b(t—a, n—1)¢'~= ]

g o)y
RN () - n(;;f )
[ o))" ]
_ a(x)b(t—x, n—1)
b(t, n)

from which it follows that for this case

(15)

The reductions of (15) to the special cases of the Binomial, Poisson,
Negative Binomial and Logarithmic series distributions are available in
Patil [4] where he obtains the results using the identities between

#a, t)=z§ah(wxlt) .

different series expansions.
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