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1. Introduction

It is well-known that, under some restrictions, the class W of Bayes
solutions in the wide sense and the closure B* of the class B of Bayes
solutions with respect to the regular topology are complete in the re-
levant class of decision functions (see [1]).

LeCam [2] asserts that the intersection of B* and W is also complete.
In this connection, it will be of some interest to know whether B'NnW
actually gives a smaller complete class than B* or W. In the present
paper sufficient conditions are given for B and W", respectively, to coin-
cide with the class of all decision functions, say D. Also examples in
which WS B"=D or B"S W=D are given. Further, in theorem 3, it is
proved that W is dense in D under fairly general conditions. Since in
many cases we have B*< D, this fact implies that there often exist ele-
ments of W which are not contained in B*. Thus, we might say that
W is not likely to give a smaller complete class than B-.

2. Notations and definitions

In this paper, we deal only with the non-sequential case, which does
not seem to harm essentials of the theory. A measurable space (227 <Z)
will be called a sample space, where <% is a o-field of subsets of -2”and
we consider a family of probability measures on .27 7= {p,: 0 € 2}, where
the index set 2 is called a parameter space. A topological space A will
be an action space and a function w(4, a) on 2x A will be called a loss
function.

Throughout this paper we assume the following :

Assumption (A). A is a metrizable, locally compact, and s-compact
space.

Assumption (B). w(0, a) is lower semicontinuous on A and w(f, a)=0
for every €2 and a € A.

Assumption (C). Every p, (6 € 2) is absolutely continuous with re-

-
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spect to a o-finite measure . We denote the density dp,/dp by f(-, 0).

Let Cy(A) be the totality of bounded continuous real valued func-
tions on A vanishing outside a compact set of A with norm |al|=
il}gla(a) |. Let M(:2°) be the set of all bounded <#-measurable func-

tions with norm || f||=ess. sup | f(x)| and # the set of all probability

T €
measures on A. A mapping § of 2°to F: x—d( - : z) is called a decision

funetion if La(a)&(da:x)éM(&%’) for all @€ C(A). We denote this in-
tegral by 0o a.

Let E(Z”) be the closed linear space spanned by {f(x,0):0€2}. We
write Ls(x)f(m)dp(x) by fos for feE(Z).

We can define a topology by neighborhoods
V(o*:¢, fiy aiy, 1=1,2, ---, n)
={5:‘fi°6°ai—f«;°5*°atl <e, ’i:l, 2’ -..,n} ,

where a; runs through C,(4) and f; through E(Z?) (LeCam [2]). We call
it the regular topology. By assumption (B), for every fixed #, the loss
function w(f, @) is the limit of a monotone increasing sequence {a,}

(e C(4), n=1,2, --.) and so SA w(f, a)d(da : x) is also a Z-measurable
function of . Hence the risk funection

0, 5)=§ S}”(”' a)d(da : 2)f (z, O)dp(x)

can be defined for every (¢ 2) and (¢ D).

We call a probability measure on 2 an a priori distribution on 2
and denote by .M the set of all a priori distributions on 2 having as
its carrier a finite subset of 2. Hereafter we denote the integral

So”("’ 3)dé(d) by (¢, 8) for an a priori distribution &.
For a given class & of a priori distributions, we denote by B, the

set of all Bayes solutions with respect to some & in &. If there exists
a sequence of &,, &,, --- such that lim (r(&,, 6*)—inf r(&,, §))=0, 6* is called

n—o0 8

a Bayes solution in the wide sense with respect to &, &, ---. For a
given class & of a priori distributions, we denote by W, the set of
all Bayes solutions in the wide sense with respeet to &, &, ---, where

all ¢, are included in &.
Throughout this paper we denote by S* the closure of S(cD) for
the regular topology.
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3. Closures of B and W

A family of probability measures {p,: 8 € 2} on (27 %) will be call-
ed to have the B-property if there exist mutually disjoint subsets K,

E, - (¢7) and 0, 0, -+~ (¢9) such that U Fi=2" and py(E)=1
for all <. As an example, a family of uniform distributions with range
[#, 0+1] has this property.

THEOREM 1. Suppose that

(l.a) FP={p,:0¢8} has the B-property,

(1.b)  there exists a, such that w(8, a,)=inf w(d, a) for all 6.
Then we have B:"m:D.

Proof. From the B-property of Z° we can choose mutually disjoint

E, E, --- and 0, 6, --- satisfying U E,=.2" and p,(E)=1 for all i.
i=1

For a given 4, and a neighborhood V(4,:¢, fi, a;, 1=1,2, -+, n), we
choose 7, such that

S | £i) | dul) <5 for all i=1,2, -+, m,
(UE )
i=1
where Izngax |la;]|. Define a decision function &* as follows:

(- :1x)=0,(":%) for xz€ iL_j’lE,-
o*({a,,} : x)=1 for z e E.(m>n,) .

We have for m>n,

7O, )=\ | (00, )0¥(da; ) (@, 0.)p2)

m

=S inf w(0n, @), 0.)du()

m

= inf w(On, a)ps (En)= inf w(0n, a)
= il;lf T(On, 0) .

Thus, for m>mn, 6* is a Bayes solution with respect to §, , where &,
is the a priori distribution satisfying &7 ({0.})=1.
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Further we have

Ifi°5o°ai—ft°5*°ai|

- ’S Sfl‘(“m(‘ia 1 2)f(x)dp(x) — S Sﬁa,-(a)é*(da : 7) f (@) ()
(W (U
ézl; S lﬂ(w)ldp(x)=213"f=e for all 1.

(G

This shows 6* € V(3,1 ¢, f,, a;, 1=1,2, ---, n) and we obtain By=D.

Using the above theorem, we can obtain an example in which
w EB:'% . In general, such an example is not easily obtained. Let
the sample space .2 be the real line (—oo, +o0) and the density of
D5 (0 € (—o0, +0)) be such that

1 1
1 for ze(0——, 04+—-},
o, O)ZI ( 2 2)

0 otherwise.

Define w(f, a)=(f—a)’. Consider the following two decision functions
0y, 0y:

o ({x} : x)=1 for all z € 2,
o({x+1} : x)=1 for all x € 2.

With easy calculations, we have »(6, 6)=1/12 and (6, 6,)=13/12 for all
f€(—oo, +00). So 4, can not be a Bayes solution in the wide sense
since 7(§, d;)—r(¢, 0,)=1 for all &, On the other hand this problem satis-
fies the conditions of the previous theorem and hence B'g,=D. Thus

we have WﬂgB:m' Since we can easily get an example in which
‘wS W, the assertion that B'yNW is complete is actually an im-
provement of the theorems about completeness of stu and W.

A family of probability measures {p,: 6 € 2} on (2° &) will be call-
ed to have the A-property if there exist mutually disjoint subsets E,,

E;, --- (e F)and b, b, --- (€) such that G E,=.2 and liim Do (E;)=1.
i=1 —00

We meet such a family in many cases, e.g. a family of distributions
-8z

with the location parameter 8, Poisson distributions exb" , ete.

THEOREM 2. Suppose that
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(2.a) F={p,:0¢c2} has the A-property,

(2.b)  there exists K such that w(6, a)<K<oco for all 8 and a.
Then we have W%=D.

Proof. By (2.a), there exist mutually disjoint E,, E,, --- and 6,,
#,, -+- such that °L°) E;=2 and lim p,(E;)=1. For a given §,€ D and a
i=1 i—o0

neighborhood V(5,:¢, fi, a;, =1, 2, -+, n), we can choose a sufficiently
large m, such that

[1 7@ du< 2 for all i=1,2, -, m,
( 18 E;)°
i=1
where I is already defined in the previous theorem.

We define a decision function 6* as follows:

(- :a)=0(-:x) for zeU E
i=1

o*({d, }; 2)=1 for xe¢E_ (m>n),

where d, is an action satisfying w(f., d, )< inf w(f,, a)+L. Then we
« m

have for m>n,

"(On, %) — inf 7(6, 3) = S | 900, 3*(da: ) (a, 0,)dp(z)

m

+{,. | w0, 9p4da: 2)5@, 0.duta)

~ inf w(ta, @) <Py, (En) - (inf (0, @)+ 1)
a a m

+K(1—p,,(En))— inf w(b,, a)

<1 4Ki-p, (B .
m

It follows from the A-property that the right hand side tends to 0 as
m—oo. Hence 6* above defined is a Bayes solution in the wide sense
with respect to &, (m=1,2, --.). The proof of & € V(6,:¢, f,, a;, i=1,
2, ---, n) is completely similar to that of the previous theorem and is
omitted. Hence we obtain Wg=D.

We note that assumption (A) and the lower semicontinuity of the
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loss function, which have been assumed throughout this paper, are not
necessary in the proofs of theorems 1 and 2.

Before proceeding to the next theorem, we shall prove the follow-
ing lemma.

LEMMA 1. Let D* be the set of all decision functions such that there
exists a compact set C;, depending on & satisfying 6(C;: x)=1 for a.e.x
(). Then we have D**=D.

Proof. If the action space A is compact, this assertion is clear since
D*=D. So we assume that A is not compact. Take an arbitrary é € D.
For given ay, ay, - -+, a, € C(A), fi, [y -+, fo € E(Z*) and ¢(>0), put S=
U car a; where car « stands for the carrier of «. We fix a point G € S°
arbltrarlly This is possible since S is compact and A is not compact.

We define § as follows :

OB :x)=1—6(S: 2)+6(BNS:x) for acB
6(B:x)=86(BNS:x) for d¢ B.

It is easily shown that 3 becomes a decision function and moreover é¢
D*. § coincides with & on the set S. Then we have

|fiodom —fioboal
- l Sm Ssai(a)é(da - @) £ (@) () — L Ssai(a)é(da : %) f.(@)du(z)
=0<e.

Consequently € V(3:¢, fi, @, i=1,2, -+, n) and therefore D*"=D.
Thus the proof of the lemma is completed.

The condition (2. b) of theorem 2 is rather restrictive. When the
parameter space £ is a topological space, the same assertion as in the-
orem 2 can be obtained under the different conditions from those of
theorem 2.

THEOREM 3. Suppose that

(3.a) 9 is o-compact and metrizable,

(3.b) the family of functions of a: {f(x, Ow, a):0¢c 2} with a
fized x s equicontinuous on A,

(3 c) there exists a sequence F, F,, --- (C2) of compact subsets such
that U F,;=2 and lim sup f(x, O)w(8, a)=0 for a.e.x () and for any a,

n—oo §eFy
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(3.d) (8, ) is continuous on 2 for every fixed o,

(3.¢) f(x, Ow(0, a) is continuous on 2 for every fized a and x.
Let G={%, &), --- '} be a sequence of a priori distributions on o-field of
Borel subsets of 2 such that, for a compact subset E of £,

(3.1) - limé(E)=0.

Suppose further that W, is not empty and there exists o* ¢ W, such
that, for almost all x (1), there exists a compact N, for which 6*(N,: z)=1.
Then we have Wg=D.

Proof. It is sufficient to prove D*c W¢ since D=D*"C(W§)’= W
by lemma 1. Since A4 is locally compact and o-compact, we can choose
compact subsets I, I, --- of A such that j[:)lI,-:A and I,cI’, for all
J, where I’ means the interior of I. Then, for a given compact set C,
there exists I; such that CcI,. So, if we put K,={x:*(I,;: x)=1} we
have K;CK,,, for all j and G K;,=2"for a.e. x (p). It follows from (3.b)
and (3.c) that we have ~

(3.2) lim sup sup w(4, a)f(x, 6)=0 for any compact set C.
n—o 0eF: acC

Since 2 and A are metrizable and separable by assumption (A) and
(3-a), and since w(f, a)f(x, 0) is lower semicontinuous on A and on 2 by

assumption (B) and (3.e), sup sup w(f, a)f(z, 6) is measurable with re-
0cF; aeC
spect to #. Hence, by (3.2) and the Egoroff’s theorem, there exist N,,

N,, -+- € & such that N,CN,,,, #(N;)< oo for all %, iG N, = (a.e. 2(y))
=1
and
(3.3) sup sup w(f, a)f(x, ) — 0 uniformly on N,
0eFy; acly
as n—oo for any 7 and j. Put Z;=N,NK,. Then it is obvious Z,c Z,,,
for all 7+ and iG Z,= (a.e.x (1)). For a given d € D* and its neighbor-
=1

hood V{(3:¢, fi, a;, 1=1, 2, ---, m), we first choose a sufficiently large m
such that

(3.4) | 1f o) dutm< e foralls,

where K=miax [la;|]. We then define a decision function 3 as follows :
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5(-:x)=5(-:x) for x € Z,
o(-:X)=o%-:x) for x¢ Z,.

As 0 is taken from D*, there exists a compact set C, such that 6(C,: x)
=1 for a.e. # (#). Since 6 thus defined coincides with 5 on Z, and with
0% on Z;, we obtain

lim sup | (8, 5)—(8, &%) |

n—>oo 6 € Fy

= lim sup
n—-oo g€F;

SZ SC (0, a)3(da : ) f (z, O)du(x)

_Sz SA w(8, a)o* (da : x)f(x, O)dp(x)

< lim sup SZ Scw(ﬁ, a)d(da : ©)f (x, O)dpu(x)

n—ooo G€F}

+ lim sup SZ SA w(8, a)o*(da : x)f(x, O)dp(x) .

n—o g€ FS

At first we consider about the first term of the right hand side of the
above inequality. Since there exists I, satisfying C,CI;, by (3.3) we
have

(38.5) lim sup SZ SC w(8, a)o(da : ) f(zx, 0)dp(x)

n—o f¢€F;

"= lim sup SZ SI w(B, a)d(da : 2)f(x, O)du(z)

n—->oo € Ff i

< lim sup S sup w(0, a)f (@, O)du(x)
n—o 0¢€Fy Zm oac€l;

< lim S sup sup w(d, a)f(x, O)du(x)=0.
n> YZm ge FS aelj

The second term is

3.6) lim sup SZ SA w(0, a)o*(da : ©)f (@, O)dp(x)

n—o §€F;

= lim sup Sz S, w0, a)*(da : x)f (@, O)du(x)

n—o @€ F;
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< lim sup SZ sup w(4, a)f(x, O)du(x)

n—o e Ffv%m a€lp

=< limS sup sup w(f, a)f(x, 6)du(r)=0 .

n>0J2m g e F aeln

The first equality of (3.6) follows from Z,=N,NK,CK, and 6*(L,: x)=
1 for z€ K,. The last inequalities of (8.5) and (3.6) follow from Z,=
N,.NK.CN,, (Z,)<oo and (3.3). Thus we have

(3.7 lim sup | 78, 6)—r(0, 6*)| =0.

n—oo §€FS
Hence, for a given ¢, there exists 7 such that
(3.8) [ 7(8, 8)—r(B, 6%)| <e  for e Fy.

By (3. d) we have sup r(d, 6*)<oo and sup 7(fd, 5)<oo. We denote them
OecF; 0eF;

by L and T, respectively. If we take a sufficiently large n, such that

s"(Fj)<ﬁ—f for n>m,, then we have, for n>mn,,

| T(Enr 5) —T(En’ 5*) I
<, 0. 9ae.0+|, 6, Mae 0+ 10, H—r6, 1 ds0)
Fj pj F].
S(LAT)eu(F))+e&(F5)<2e.

This implies that 5 is also a Bayes solution in the wide sense with re-
spect to &, &, ---.

At last we shall show d€ V(3:¢, f;, a;, i=1, 2, ---, n). We have

’fi°g°ai-fi°5°ail

SZ;SA a(a)o*(da : x) fix)dp(x) — SZ&L a(@)d(da : ) fi(x)du(x)

szllal({,, 1£6) o) <2K( )=
The first equality follows from the fact that J coincides with & on /.
by the definition of §. The inequality follows from (3.4). Thus we com-
plete the proof.
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As an instructive example, we cite the estimation of the location
parameter ¢ of N(4, ¢°) with quadratic loss when ¢* is known. Conditions
(3. a), (8. d) and (3. e) are evidently satisfied. We have

—(z—0)*
20°

—(x—0)

oot —(@—a') exp
[

(0—a)* exp

<la—a']|- la+a’|exp%))—+2|a a’ lb?exp—(—fg—Tm
It is clear that the right hand side converges to 0 uniformly with
respect to 6 as a’ tends to a for every fixed x since the functions
—(z—0)" —(x—0)’
2¢° 24
2. Hence the condition (3. b) of the above theorem is satisfied. As for
(3. ¢), we have

exp and 6 exp are both bounded on 2 for every fixed

lim (¢ —a) exp __(x__i)_

f—stoo 2q?

as is easily proved and it is therefore satisfied. It is well-known that
a decision function ¢* satisfying o*({x} : )=1 for all x is the minimax
invariant decision function and it is a Bayes solution in the wide sense
with respect to &, &, -+, &, --- provided that &, is uniformly distributed
on the interval [—n, n]. It is obvious that é* and ¢={¢,:n=1, 2, ...}
satisfy assumptions of the above theorem. All conditions being satisfied,
we have Wi=D.

The following theorem gives a sufficient condition for existence of
a sequence & of a priori distributions which satisfies (3.1) and for which
W, is not empty.

THEOREM 4. Suppose that the topology on £2 is induced by the metric
p(0, 0"y= sup |p(S)—ps(S)|. If a subset P = {po,:1=1,2, ---} of & has
S€

the A-property and w(f, a) is bounded on 2X A, a sequence {&, :m=1,
- -} satisfies (3.1) and there exists a Bayes solution in the wide sense
with respect to this sequence, where &, is the a priori distribution satis-
Sfying & ({6.})=1.
Proof. It follows from the A-property that there exist mutually
disjoint E,, E,, --- such that U E,=% and hm o (E;)=1. Evidently

we have hm D5, (E;)=0 for every ﬁxed k. Hence we have

}llil o0, 0)= 1}2’1 l pak(Et)—pai(Ei) l

= lim p,(E)=1.
1—c0
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Consequently any 6, can not be an accumulation point of {4,:i=1, 2,
--+}. This implies that any compact set of 2 contains at most finite
members of 6,. So we have lim &,(8)=0 for any compact set S. Let

a, be such that

w(6ay 4,)< inf w(0,, @) +-L- .
acd n

We define a decision function & as follows :
o({a.} :@)=1 for € E, (n=1,2, ---).

The proof that & above defined is a Bayes solution in the wide sense
with respect to oy &,y ¢+ is completely the same as that of theorem
2 and so is omitted.

In many cases we have B*$ D. Hence theorems 2 and 3 imply that
there often exist elements of W which are not contained in B-.

In some problems complete classes based on B* are characterized
(for example, see [3] [4] [5]). However, any example of complete class
based on W does not seem to be known.

At the conclusion, the author wishes to thank Prof. H. Kudo for
his kind advice and continuing encouragement.
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