ON CLASSES OF BAYES SOLUTIONS

TOKITAKE KUSAMA

(Received Apr. 22, 1964; revised Feb. 1, 1966)

1. Introduction

It is well-known that, under some restrictions, the class W of Bayes solutions in the wide sense and the closure B^a of the class B of Bayes solutions with respect to the regular topology are complete in the relevant class of decision functions (see [1]).

LeCam [2] asserts that the intersection of B^a and W is also complete. In this connection, it will be of some interest to know whether $B^a \cap W$ actually gives a smaller complete class than B^a or W. In the present paper sufficient conditions are given for B^a and W^a , respectively, to coincide with the class of all decision functions, say D. Also examples in which $W \subsetneq B^a = D$ or $B^a \subsetneq W = D$ are given. Further, in theorem 3, it is proved that W is dense in D under fairly general conditions. Since in many cases we have $B^a \subsetneq D$, this fact implies that there often exist elements of W which are not contained in B^a . Thus, we might say that W is not likely to give a smaller complete class than B^a .

2. Notations and definitions

In this paper, we deal only with the non-sequential case, which does not seem to harm essentials of the theory. A measurable space $(\mathscr{X},\mathscr{B})$ will be called a sample space, where \mathscr{B} is a σ -field of subsets of \mathscr{X} and we consider a family of probability measures on $\mathscr{X}, \mathscr{P} = \{p_{\theta} : \theta \in \Omega\}$, where the index set Ω is called a parameter space. A topological space A will be an action space and a function $w(\theta, a)$ on $\Omega \times A$ will be called a loss function.

Throughout this paper we assume the following:

Assumption (A). A is a metrizable, locally compact, and σ -compact space.

Assumption (B). $w(\theta, a)$ is lower semicontinuous on A and $w(\theta, a) \ge 0$ for every $\theta \in \Omega$ and $a \in A$.

Assumption (C). Every p_{θ} ($\theta \in \Omega$) is absolutely continuous with re-

spect to a σ -finite measure μ . We denote the density $dp_{\theta}/d\mu$ by $f(\cdot,\theta)$. Let $C_0(A)$ be the totality of bounded continuous real valued functions on A vanishing outside a compact set of A with norm $||\alpha|| = \sup_{\alpha \in A} |\alpha(\alpha)|$. Let $M(\mathscr{X})$ be the set of all bounded \mathscr{B} -measurable functions with norm ||f|| = ess. sup |f(x)| and \mathscr{F} the set of all probability $x \in \mathscr{X}$ measures on A. A mapping δ of \mathscr{X} to $\mathscr{F}: x \to \delta(\cdot : x)$ is called a decision function if $\int_A \alpha(a)\delta(da:x) \in M(\mathscr{X})$ for all $\alpha \in C_0(A)$. We denote this integral by $\delta \circ \alpha$.

Let $E(\mathscr{S})$ be the closed linear space spanned by $\{f(x,\theta):\theta\in\Omega\}$. We write $\int_{\mathbb{R}} s(x)f(x)d\mu(x)$ by $f\circ s$ for $f\in E(\mathscr{S})$.

We can define a topology by neighborhoods

$$V(\delta^*: \varepsilon, f_i, \alpha_i, i=1, 2, \dots, n)$$

$$= \{\delta: |f_i \circ \delta \circ \alpha_i - f_i \circ \delta^* \circ \alpha_i| < \varepsilon, i=1, 2, \dots, n\},$$

where α_i runs through $C_0(A)$ and f_i through $E(\mathscr{P})$ (LeCam [2]). We call it the regular topology. By assumption (B), for every fixed θ , the loss function $w(\theta, a)$ is the limit of a monotone increasing sequence $\{\alpha_n\}$ ($\in C_0(A), n=1, 2, \cdots$) and so $\int_A w(\theta, a) \delta(da:x)$ is also a \mathscr{B} -measurable function of x. Hence the risk function

$$r(\theta, \delta) = \int_{\mathcal{X}} \int_{A} w(\theta, a) \delta(da : x) f(x, \theta) d\mu(x)$$

can be defined for every $\theta(\in \Omega)$ and $\delta(\in D)$.

We call a probability measure on Ω an a priori distribution on Ω and denote by \mathcal{M} the set of all a priori distributions on Ω having as its carrier a finite subset of Ω . Hereafter we denote the integral $\int_{\Omega} r(\theta, \delta) d\xi(\theta)$ by $r(\xi, \delta)$ for an a priori distribution ξ .

For a given class \mathcal{E} of a priori distributions, we denote by $B_{\mathcal{E}}$ the set of all Bayes solutions with respect to some ξ in \mathcal{E} . If there exists a sequence of ξ_1, ξ_2, \cdots such that $\lim_{n\to\infty} (r(\xi_n, \delta^*) - \inf_{\delta} r(\xi_n, \delta)) = 0$, δ^* is called a Bayes solution in the wide sense with respect to ξ_1, ξ_2, \cdots . For a given class \mathcal{E} of a priori distributions, we denote by $W_{\mathcal{E}}$ the set of all Bayes solutions in the wide sense with respect to ξ_1, ξ_2, \cdots , where all ξ_n are included in \mathcal{E} .

Throughout this paper we denote by S^{α} the closure of $S(\subset D)$ for the regular topology.

3. Closures of B and W

A family of probability measures $\{p_{\theta}: \theta \in \Omega\}$ on $(\mathcal{X}, \mathcal{B})$ will be called to have the *B*-property if there exist mutually disjoint subsets E_1 , E_2 , \cdots $(\in \mathcal{B})$ and θ_1 , θ_2 , \cdots $(\in \Omega)$ such that $\bigcup_{i=1}^{\infty} E_i = \mathcal{X}$ and $p_{\theta_i}(E_i) = 1$ for all i. As an example, a family of uniform distributions with range $[\theta, \theta+1]$ has this property.

THEOREM 1. Suppose that

- (1.a) $\mathscr{S} = \{p_{\theta} : \theta \in \Omega\}$ has the B-property,
- (1.b) there exists a_{θ} such that $w(\theta, a_{\theta}) = \inf_{a} w(\theta, a)$ for all θ . Then we have $B^{\alpha}_{\mathcal{H}} = D$.

Proof. From the *B*-property of \mathscr{P} , we can choose mutually disjoint E_1, E_2, \cdots and $\theta_1, \theta_2, \cdots$ satisfying $\bigcup\limits_{i=1}^{\infty} E_i = \mathscr{X}$ and $p_{\theta_i}(E_i) = 1$ for all i. For a given δ_0 and a neighborhood $V(\delta_0: \varepsilon, f_i, \alpha_i, i = 1, 2, \cdots, n)$, we choose n_0 such that

$$\int_{\substack{n_0 \ (\bigcup E_i)^c}} |f_i(x)| d\mu(x) < \frac{\varepsilon}{2I} \quad \text{for all } i=1, 2, \cdots, n,$$

where $I=\max ||\alpha_i||$. Define a decision function δ^* as follows:

$$\delta^*(\ \cdot : x) = \delta_0(\ \cdot : x) \qquad ext{for} \quad x \in \bigcup_{i=1}^{n_0} E_i$$
 $\delta^*(\{a_{\theta_m}\}: x) = 1 \qquad \qquad ext{for} \quad x \in E_m(m > n_0) \; .$

We have for $m > n_0$

$$r(\theta_m, \, \delta^*) = \int_{E_m} \int_A w(\theta_m, \, a) \delta^*(da; \, x) f(x, \, \theta_m) d\mu(x)$$

$$= \int_{E_m} \inf_a w(\theta_m, \, a) f(x, \, \theta_m) d\mu(x)$$

$$= \inf_a w(\theta_m, \, a) p_{\theta_m}(E_m) = \inf_a w(\theta_m, \, a)$$

$$= \inf_b r(\theta_m, \, \delta).$$

Thus, for $m > n_0$, δ^* is a Bayes solution with respect to ξ_{θ_m} , where ξ_{θ_m} is the a priori distribution satisfying $\xi_{\theta_m}^{\pi}(\{\theta_m\})=1$.

Further we have

$$egin{aligned} &|f_i \circ \delta_0 \circ lpha_i - f_i \circ \delta^* \circ lpha_i| \ &= igg| \int\limits_{\substack{n_0 \ (i=1}E_i)^c} \int\limits_{A} lpha_i(a) \delta_0(da:x) f_i(x) d\mu(x) - \int\limits_{\substack{n_0 \ (i=1}E_i)^c} \int\limits_{A} lpha_i(a) \delta^*(da:x) f_i(x) d\mu(x) igg| \ &\leq 2I \int\limits_{\substack{n_0 \ (i=1}E_i)^c} |f_i(x)| \, d\mu(x) = 2I rac{arepsilon}{2I} = arepsilon \quad ext{for all } i. \end{aligned}$$

This shows $\delta^* \in V(\delta_0 : \varepsilon, f_i, \alpha_i, i=1, 2, \dots, n)$ and we obtain $B_{\mathcal{M}}^{\alpha} = D$.

Using the above theorem, we can obtain an example in which $W_{\mathcal{H}} \subseteq B^{\alpha}_{\mathcal{H}}$. In general, such an example is not easily obtained. Let the sample space \mathscr{X} be the real line $(-\infty, +\infty)$ and the density of p_{θ} $(\theta \in (-\infty, +\infty))$ be such that

$$f(x, \theta) = \begin{cases} 1 & \text{for } x \in \left(\theta - \frac{1}{2}, \theta + \frac{1}{2}\right), \\ 0 & \text{otherwise.} \end{cases}$$

Define $w(\theta, a) = (\theta - a)^2$. Consider the following two decision functions δ_1, δ_2 :

$$\delta_1(\{x\}:x)=1$$
 for all $x\in\mathscr{X}$, $\delta_2(\{x+1\}:x)=1$ for all $x\in\mathscr{X}$.

With easy calculations, we have $r(\theta, \delta_1)=1/12$ and $r(\theta, \delta_2)=13/12$ for all $\theta \in (-\infty, +\infty)$. So δ_2 can not be a Bayes solution in the wide sense since $r(\xi, \delta_2)-r(\xi, \delta_1)=1$ for all ξ . On the other hand this problem satisfies the conditions of the previous theorem and hence $B^a_{\mathcal{M}}=D$. Thus we have $W_{\mathcal{M}} \subsetneq B^a_{\mathcal{M}}$. Since we can easily get an example in which $B^a_{\mathcal{M}} \subsetneq W$, the assertion that $B^a_{\mathcal{M}} \cap W$ is complete is actually an improvement of the theorems about completeness of $B^a_{\mathcal{M}}$ and W.

A family of probability measures $\{p_{\theta}:\theta\in\Omega\}$ on $(\mathscr{X},\mathscr{B})$ will be called to have the A-property if there exist mutually disjoint subsets E_1 , E_2 , \cdots $(\in\mathscr{B})$ and θ_1 , θ_2 , \cdots $(\in\mathscr{Q})$ such that $\bigcup_{i=1}^{\infty} E_i = \mathscr{X}$ and $\lim_{i\to\infty} p_{\theta_i}(E_i) = 1$. We meet such a family in many cases, e.g. a family of distributions with the location parameter θ , Poisson distributions $\frac{e^{-\theta}\theta^x}{x!}$, etc.

THEOREM 2. Suppose that

- (2.a) $\mathscr{S} = \{p_a : \theta \in \Omega\}$ has the A-property,
- (2.b) there exists K such that $w(\theta, a) \leq K < \infty$ for all θ and a. Then we have $W^{\alpha}_{\mathcal{M}} = D$.

Proof. By (2. a), there exist mutually disjoint E_1, E_2, \cdots and $\theta_1, \theta_2, \cdots$ such that $\bigcup_{i=1}^{\infty} E_i = \mathscr{X}$ and $\lim_{i \to \infty} p_{\theta_i}(E_i) = 1$. For a given $\delta_0 \in D$ and a neighborhood $V(\delta_0 : \varepsilon, f_i, \alpha_i, i = 1, 2, \cdots, n)$, we can choose a sufficiently large n_0 such that

$$\int\limits_{\substack{n_0 \ (\bigcup\limits_{i=1}^{n_0} E_i)^c}} \mid f_i(x) \mid d\mu(x) < \frac{\varepsilon}{2I} \quad \text{for all } i=1, 2, \cdots, n ,$$

where I is already defined in the previous theorem.

We define a decision function δ^* as follows:

$$\delta^*(\cdot:x) = \delta_0(\cdot:x)$$
 for $x \in \bigcup_{i=1}^{n_0} E_i$
 $\delta^*(\{d_{\theta_m}\}; x) = 1$ for $x \in E_m$ $(m > n_0)$,

where d_{θ_m} is an action satisfying $w(\theta_m, d_{\theta_m}) < \inf_a w(\theta_m, a) + \frac{1}{m}$. Then we have for $m > n_0$

$$\begin{split} r(\theta_m, \, \delta^*) - \inf_{\delta} r(\theta_m, \, \delta) &= \int_{E_m} \int_A w(\theta_m, \, a) \delta^*(da:x) f(x, \, \theta_m) d\mu(x) \\ &+ \int_{E_m^c} \int_A w(\theta_m, \, a) \delta^*(da:x) f(x, \, \theta_m) d\mu(x) \\ &- \inf_a w(\theta_m, \, a) \leq p_{\theta_m}(E_m) \cdot \left(\inf_a w(\theta_m, \, a) + \frac{1}{m}\right) \\ &+ K(1 - p_{\theta_m}(E_m)) - \inf_a w(\theta_m, \, a) \\ &\leq \frac{1}{m} + K(1 - p_{\theta_m}(E_m)) \; . \end{split}$$

It follows from the A-property that the right hand side tends to 0 as $m\to\infty$. Hence δ^* above defined is a Bayes solution in the wide sense with respect to $\xi_{\theta_m}(m=1,\,2,\,\cdots)$. The proof of $\delta^*\in V(\delta_0:\varepsilon,\,f_i,\,\alpha_i,\,i=1,\,2,\,\cdots,\,n)$ is completely similar to that of the previous theorem and is omitted. Hence we obtain $W^*_{\mathcal{M}}=D$.

We note that assumption (A) and the lower semicontinuity of the

loss function, which have been assumed throughout this paper, are not necessary in the proofs of theorems 1 and 2.

Before proceeding to the next theorem, we shall prove the following lemma.

LEMMA 1. Let D^* be the set of all decision functions such that there exists a compact set C_δ depending on δ satisfying $\delta(C_\delta: x) = 1$ for a.e.x (μ) . Then we have $D^{*^{\alpha}} = D$.

Proof. If the action space A is compact, this assertion is clear since $D^*=D$. So we assume that A is not compact. Take an arbitrary $\delta \in D$. For given $\alpha_1, \alpha_2, \dots, \alpha_n \in C_0(A), f_1, f_2, \dots, f_n \in E(\mathscr{P})$ and $\varepsilon(>0)$, put $S=\bigcup_{i=1}^n \operatorname{car} \alpha_i$ where $\operatorname{car} \alpha$ stands for the carrier of α . We fix a point $\tilde{\alpha} \in S^c$ arbitrarily. This is possible since S is compact and A is not compact.

We define $\hat{\delta}$ as follows:

$$\hat{\delta}(B:x) = 1 - \delta(S:x) + \delta(B \cap S:x)$$
 for $\tilde{a} \in B$
 $\hat{\delta}(B:x) = \delta(B \cap S:x)$ for $\tilde{a} \notin B$.

It is easily shown that $\hat{\delta}$ becomes a decision function and moreover $\hat{\delta} \in D^*$. $\hat{\delta}$ coincides with δ on the set S. Then we have

$$egin{aligned} &|f_i\circ\delta\circlpha_i-f_i\circ\hat\delta\circlpha_i|\ &=\left|\int_{x}\int_{S}lpha_i(a)\delta(da:x)f_i(x)d\mu(x)-\int_{x}\int_{S}lpha_i(a)\hat\delta(da:x)f_i(x)d\mu(x)
ight|\ &=0$$

Consequently $\hat{\delta} \in V(\delta : \varepsilon, f_i, \alpha_i, i=1, 2, \dots, n)$ and therefore $D^{*^{\alpha}} = D$. Thus the proof of the lemma is completed.

The condition (2. b) of theorem 2 is rather restrictive. When the parameter space Ω is a topological space, the same assertion as in theorem 2 can be obtained under the different conditions from those of theorem 2.

THEOREM 3. Suppose that

- (3.a) Ω is σ -compact and metrizable,
- (3.b) the family of functions of $a: \{f(x, \theta)w(\theta, a): \theta \in \Omega\}$ with a fixed x is equicontinuous on A,
- (3.c) there exists a sequence $F_1, F_2, \cdots (\subset \Omega)$ of compact subsets such that $\bigcup_{i=1}^{\infty} F_i = \Omega$ and $\lim_{n \to \infty} \sup_{\theta \in F_n^c} f(x, \theta) w(\theta, a) = 0$ for a.e.x (μ) and for any a,

- (3.d) $r(\theta, \delta)$ is continuous on Ω for every fixed δ ,
- (3.e) $f(x, \theta)w(\theta, a)$ is continuous on Ω for every fixed a and x. Let $\Omega = \{\xi_1, \xi_2, \dots\}$ be a sequence of a priori distributions on σ -field of Borel subsets of Ω such that, for a compact subset E of Ω ,

$$\lim_{n\to\infty}\xi_n(E)=0.$$

Suppose further that $W_{\mathcal{G}}$ is not empty and there exists $\delta^* \in W_{\mathcal{G}}$ such that, for almost all $x(\mu)$, there exists a compact N_x for which $\delta^*(N_x:x)=1$. Then we have $W_{\mathcal{G}}^{\alpha}=D$.

Proof. It is sufficient to prove $D^* \subset W_{\mathcal{G}}^{\alpha}$ since $D = D^{*^{\alpha}} \subset (W_{\mathcal{G}}^{\alpha})^{\alpha} = W_{\mathcal{G}}^{\alpha}$ by lemma 1. Since A is locally compact and σ -compact, we can choose compact subsets I_1, I_2, \cdots of A such that $\bigcup_{j=1}^{\infty} I_j = A$ and $I_j \subset I_{j+1}^0$ for all j, where I^0 means the interior of I. Then, for a given compact set C, there exists I_j such that $C \subset I_j$. So, if we put $K_j = \{x : \delta^*(I_j : x) = 1\}$ we have $K_j \subset K_{j+1}$ for all j and $\bigcup_{j=1}^{\infty} K_j = \mathscr{X}$ for a.e. $x(\mu)$. It follows from (3.b) and (3.c) that we have

(3.2)
$$\lim_{n\to\infty} \sup_{\theta\in F_n^c} \sup_{a\in C} w(\theta, a) f(x, \theta) = 0 \text{ for any compact set } C.$$

Since Ω and A are metrizable and separable by assumption (A) and (3.a), and since $w(\theta, a)f(x, \theta)$ is lower semicontinuous on A and on Ω by assumption (B) and (3.e), sup $\sup_{\theta \in F_n^c} w(\theta, a)f(x, \theta)$ is measurable with respect to x. Hence, by (3.2) and the Egoroff's theorem, there exist N_1 , $N_2, \dots \in \mathcal{B}$ such that $N_i \subset N_{i+1}$, $\mu(N_i) < \infty$ for all i, $\bigcup_{i=1}^{\infty} N_i = \mathcal{X}$ (a.e. $x(\mu)$) and

(3.3)
$$\sup_{\theta \in F_n^c} \sup_{a \in I_j} w(\theta, a) f(x, \theta) \to 0 \text{ uniformly on } N_i$$

as $n\to\infty$ for any i and j. Put $Z_i=N_i\cap K_i$. Then it is obvious $Z_i\subset Z_{i+1}$ for all i and $\bigcup_{i=1}^{\infty}Z_i=\mathscr{X}$ (a.e.x (μ)). For a given $\delta\in D^*$ and its neighborhood $V(\delta:\varepsilon,f_i,\alpha_i,i=1,2,\ldots,n)$, we first choose a sufficiently large m such that

(3.4)
$$\int_{Z_m^c} |f_i(x)| d\mu(x) < \frac{\varepsilon}{2K} \quad \text{for all } i,$$

where $K=\max_{i}||\alpha_{i}||$. We then define a decision function $\tilde{\delta}$ as follows:

$$\widetilde{\delta}(\cdot : x) = \delta(\cdot : x)$$
 for $x \in Z_m$

$$\widetilde{\delta}(\cdot : X) = \delta^*(\cdot : x)$$
 for $x \notin Z_m$

As δ is taken from D^* , there exists a compact set C_{δ} such that $\delta(C_{\delta}:x)$ =1 for a.e. $x(\mu)$. Since $\tilde{\delta}$ thus defined coincides with δ on Z_m and with δ^* on Z_m^c , we obtain

$$\begin{split} &\lim_{n\to\infty}\sup_{\theta\in F_n^c}|r(\theta,\,\tilde{\delta})-r(\theta,\,\delta^*)|\\ &=\lim_{n\to\infty}\sup_{\theta\in F_n^c}\left|\int_{Z_m}\int_{C_\delta}w(\theta,\,a)\tilde{\delta}(da:x)f(x,\,\theta)d\mu(x)\right|\\ &-\int_{Z_m}\int_Aw(\theta,\,a)\delta^*\left(da:x\right)f(x,\,\theta)d\mu(x)\right|\\ &\leq\lim_{n\to\infty}\sup_{\theta\in F_n^c}\int_{Z_m}\int_{C_\delta}w(\theta,\,a)\tilde{\delta}(da:x)f(x,\,\theta)d\mu(x)\\ &+\lim_{n\to\infty}\sup_{\theta\in F_n^c}\int_{Z_m}\int_Aw(\theta,\,a)\delta^*(da:x)f(x,\,\theta)d\mu(x)\;. \end{split}$$

At first we consider about the first term of the right hand side of the above inequality. Since there exists I_j satisfying $C_i \subset I_j$, by (3.3) we have

(3.5)
$$\lim_{n\to\infty} \sup_{\theta\in F_n^c} \int_{Z_m} \int_{C_\delta} w(\theta, a) \tilde{\delta}(da: x) f(x, \theta) d\mu(x)$$

$$= \lim_{n\to\infty} \sup_{\theta\in F_n^c} \int_{Z_m} \int_{I_j} w(\theta, a) \tilde{\delta}(da: x) f(x, \theta) d\mu(x)$$

$$\leq \lim_{n\to\infty} \sup_{\theta\in F_n^c} \int_{Z_m} \sup_{a\in I_j} w(\theta, a) f(x, \theta) d\mu(x)$$

$$\leq \lim_{n\to\infty} \int_{Z_m} \sup_{\theta\in F_n^c} \sup_{a\in I_j} w(\theta, a) f(x, \theta) d\mu(x) = 0.$$

The second term is

(3.6)
$$\lim_{n \to \infty} \sup_{\theta \in F_n^c} \int_{Z_m} \int_A w(\theta, a) \delta^*(da : x) f(x, \theta) d\mu(x)$$
$$= \lim_{n \to \infty} \sup_{\theta \in F_n^c} \int_{Z_m} \int_{I_m} w(\theta, a) \delta^*(da : x) f(x, \theta) d\mu(x)$$

$$\leq \lim_{n \to \infty} \sup_{\theta \in F_n^c} \int_{Z_m} \sup_{a \in I_m} w(\theta, a) f(x, \theta) d\mu(x)$$

$$\leq \lim_{n \to \infty} \int_{Z_m} \sup_{\theta \in F_n^c} \sup_{a \in I_m} w(\theta, a) f(x, \theta) d\mu(x) = 0.$$

The first equality of (3.6) follows from $Z_m = N_m \cap K_m \subset K_m$ and $\delta^*(I_m : x) = 1$ for $x \in K_m$. The last inequalities of (3.5) and (3.6) follow from $Z_m = N_m \cap K_m \subset N_m$, $\mu(Z_m) < \infty$ and (3.3). Thus we have

(3.7)
$$\lim_{n\to\infty} \sup_{\theta\in F_c^n} |r(\theta,\,\tilde{\delta}) - r(\theta,\,\delta^*)| = 0.$$

Hence, for a given ε , there exists j such that

(3.8)
$$|r(\theta, \tilde{\delta}) - r(\theta, \delta^*)| < \varepsilon \quad \text{for } \theta \in F_j^c$$

By (3. d) we have $\sup_{\theta \in F_j} r(\theta, \delta^*) < \infty$ and $\sup_{\theta \in F_j} r(\theta, \tilde{\delta}) < \infty$. We denote them by L and T, respectively. If we take a sufficiently large n_0 such that $\xi_n(F_j) < \frac{\varepsilon}{L+T}$ for $n > n_0$, then we have, for $n > n_0$,

$$\begin{split} \mid r(\xi_n, \, \widetilde{\delta}) - r(\xi_n, \, \delta^*) \mid \\ & \leq \int_{F_j} r(\theta, \, \widetilde{\delta}) d\xi_n(\theta) + \int_{F_j} r(\theta, \, \delta^*) d\xi_n(\theta) + \int_{F_j^c} \mid r(\theta, \, \widetilde{\delta}) - r(\theta, \, \delta^*) \mid d\xi_n(\theta) \\ & \leq (L + T) \xi_n(F_j) + \varepsilon \xi_n(F_j^c) < 2\varepsilon \; . \end{split}$$

This implies that $\hat{\delta}$ is also a Bayes solution in the wide sense with respect to ξ_1, ξ_2, \cdots .

At last we shall show $\tilde{\delta} \in V(\delta : \varepsilon, f_i, \alpha_i, i=1, 2, \dots, n)$. We have

$$egin{aligned} &|f_i\circ\widetilde{\delta}\circlpha_i-f_i\circ\delta\circlpha_i\,|\ &=\left|\int_{{\mathbb Z}_m^c}\!\int_Alpha_i(a)\delta^*(da:x)f_i(x)d\mu(x)-\int_{{\mathbb Z}_m^c}\!\int_Alpha_i(a)\delta(da:x)f_i(x)d\mu(x)
ight|\ &\leq 2\,||lpha_i\,||\Big(\int_{{\mathbb Z}_m^c}|f_i(x)\,|\,d\mu(x)\Big)\!<\!2K\!\Big(rac{arepsilon}{2K}\Big)\!=\!arepsilon\,. \end{aligned}$$

The first equality follows from the fact that $\tilde{\delta}$ coincides with δ on Z_m by the definition of $\tilde{\delta}$. The inequality follows from (3.4). Thus we complete the proof.

As an instructive example, we cite the estimation of the location parameter θ of $N(\theta, \sigma^2)$ with quadratic loss when σ^2 is known. Conditions (3. a), (3. d) and (3. e) are evidently satisfied. We have

$$\begin{aligned} & \left| (\theta - a)^2 \exp \frac{-(x - \theta)^2}{2\sigma^2} - (\theta - a')^2 \exp \frac{-(x - \theta)^2}{2\sigma^2} \right| \\ & \leq |a - a'| \cdot |a + a'| \exp \frac{-(x - \theta)^2}{2\sigma^2} + 2|a - a'| \theta \exp \frac{-(x - \theta)^2}{2\sigma^2} . \end{aligned}$$

It is clear that the right hand side converges to 0 uniformly with respect to θ as a' tends to a for every fixed x since the functions $\exp \frac{-(x-\theta)^2}{2\sigma^2}$ and $\theta \exp \frac{-(x-\theta)^2}{2\sigma^2}$ are both bounded on Ω for every fixed x. Hence the condition (3. b) of the above theorem is satisfied. As for (3. c), we have

$$\lim_{\theta \to \pm \infty} (\theta - a)^2 \exp \frac{-(x - \theta)^2}{2\sigma^2} = 0$$

as is easily proved and it is therefore satisfied. It is well-known that a decision function δ^* satisfying $\delta^*(\{\bar{x}\}:x)=1$ for all x is the minimax invariant decision function and it is a Bayes solution in the wide sense with respect to $\xi_1, \, \xi_2, \, \cdots, \, \xi_n, \, \cdots$ provided that ξ_n is uniformly distributed on the interval $[-n, \, n]$. It is obvious that δ^* and $\mathcal{Q}=\{\xi_n:n=1,\,2,\,\cdots\}$ satisfy assumptions of the above theorem. All conditions being satisfied, we have $W_G^*=D$.

The following theorem gives a sufficient condition for existence of a sequence \mathcal{G} of a priori distributions which satisfies (3.1) and for which $W_{\mathcal{G}}$ is not empty.

THEOREM 4. Suppose that the topology on Ω is induced by the metric $\rho(\theta, \theta') = \sup_{S \in \mathscr{B}} |p_{\theta}(S) - p_{\theta'}(S)|$. If a subset $\widehat{\mathscr{P}} = \{p_{\theta_i} : i = 1, 2, \cdots\}$ of \mathscr{P} has the A-property and $w(\theta, a)$ is bounded on $\Omega \times A$, a sequence $\{\xi_{\theta_n} : n = 1, 2, \cdots\}$ satisfies (3.1) and there exists a Bayes solution in the wide sense with respect to this sequence, where ξ_{θ_n} is the a priori distribution satisfying $\xi_{\theta_n}(\{\theta_n\}) = 1$.

Proof. It follows from the A-property that there exist mutually disjoint E_1, E_2, \cdots such that $\bigcup_{i=1}^{\infty} E_i = \mathscr{X}$ and $\lim_{i \to \infty} p_{\theta_i}(E_i) = 1$. Evidently we have $\lim p_{\theta_k}(E_i) = 0$ for every fixed k. Hence we have

$$egin{aligned} &\lim_{i o\infty}
ho(heta_k,\; heta_i)\!\geq\lim_{i o\infty}\mid p_{ heta_k}\!(E_i)\!-\!p_{ heta_i}\!(E_i)\mid \ &=\lim_{i o\infty}p_{ heta_i}\!(E_i)\!=\!1\;. \end{aligned}$$

Consequently any θ_k can not be an accumulation point of $\{\theta_i: i=1, 2, \dots\}$. This implies that any compact set of Ω contains at most finite members of θ_i . So we have $\lim_{i\to\infty} \xi_{\theta_i}(S)=0$ for any compact set S. Let a_n be such that

$$w(\theta_n, a_n) \leq \inf_{a \in A} w(\theta_n, a) + \frac{1}{n}$$
.

We define a decision function $\tilde{\delta}$ as follows:

$$\tilde{\delta}(\{a_n\}:x)=1$$
 for $x\in E_n$ $(n=1, 2, \cdots)$.

The proof that $\tilde{\delta}$ above defined is a Bayes solution in the wide sense with respect to $\xi_{\theta_1}, \xi_{\theta_2}, \cdots$ is completely the same as that of theorem 2 and so is omitted.

In many cases we have $B^{\alpha} \subsetneq D$. Hence theorems 2 and 3 imply that there often exist elements of W which are not contained in B^{α} .

In some problems complete classes based on B^{α} are characterized (for example, see [3] [4] [5]). However, any example of complete class based on W does not seem to be known.

At the conclusion, the author wishes to thank Prof. H. Kudo for his kind advice and continuing encouragement.

WASEDA UNIVERSITY

REFERENCES

- [1] A. Wald, Statistical Decision Functions, New York, 1950.
- [2] L. LeCam, "An extension of Wald's theory of statistical decision functions," Ann. Math. Statist., 26 (1955), 69-81.
- [3] A. Birnbaum, "Characterizations of complete classes of tests of some multiparametric hypothesis, with applications to likelihood ratio tests," Ann. Math. Statist., 26 (1955), 21-36.
- [4] H. Kudo, "Locally complete class of tests," Bull. Intern. Statist. Inst., Tokyo, (1961), 173-180.
- [5] J. Sacks, "Generalized Bayes solutions in estimation problems," Ann. Math. Statist., 34 (1963), 751-768.