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1. Introduction and Summary

It is natural to consider the sample mean deviation as a sample
characteristic corresponding to the population mean deviation. But by
definition the sample mean deviation contains moduli, which makes it
difficult to treat its sampling distribution, etc. I have not yet seen any
literature concerning the sampling distribution of the sample mean de-
viation other than Godwin’s [3], in which he has treated the normal case
and the result of which is too complicated as the sample size n increases.

As for the Pearson type distribution, it can be easily shown that
the mean deviation (more generally the absolute central moment of any
odd order) is expressed as a function of mean and three central moments
from the 2nd order to the 4th order (cf.[5]). In this paper we consider
the statistic obtained by replacing these four moments in this function
with the corresponding sample characteristics and show that its sampl-
ing distribution is asymptotically normal and, consequently, it is a con-
sistent estimator for the mean deviation.

2. The relation between the mean deviation and the central mo-
ments

We shall consider the Pearson distribution, of which the probability
density function satisfies the differential equation

@2.1) f’(w)=%ﬂ@ :

We put

p=|"_ar@as
@.2)

m=__@-wrf@ds  (=0,1,2, ).
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Then we have immediately from (2.1)

(2.3)  [(bo+bip+byte’) + (b1 +2bye)( — p2) + by — p2)'1.f ()
' =[la+p)+(@—m1f(z)
(2.4)  [bo+bupt+bupe') (o — )+ (by 4+ 2bye)(@ — )+ byl — )1 ()
=lla+m@—py+@—p*1f(®) ©=1,2-.-,7).

Integrating the left hand sides by parts, we can find, assuming that the
integrals exist and that lim (x—p)’f(x)=0, the following relations :
T—t oo

—(b+2bp)=a+p
(2.5) —v(0o+bypt +bap)pt, 1 — (v +1)(by +2bose)pt, — (v +2)bpe, 14
=@+mp+r. (=12, ---, 7).
Using the matrix notations the above relations can be rewritten as

@.5) Mp=—np,
where
"1 0 1 2 -
0 o 2p5 4ppst )
0 3Bps 3(pptp)  3plpat6pps+5py
(2.6)
S T
p= oo, p=
b, s
_ b _ _ P _

Therefore, these four constants in the equation (2.1) can be expressed
in terms of the mean g and the three central moments (4, g, o (as-
suming that the matrix M is non-singular):

@e.7 p=—M"p,
where
(2.8) !
_"1 =125, pi—bpy A ]
M M M

0 =20 ri+6ppu+6—5pmp) Ot —3pm O —5pp,  2(pl— 3 +2pp)
M M . M

I

M—l

0 12p (s +p13) — 93+ 6pps+5p —4(#;11"‘&)
M M M
0 L =6 ’ " =3y i 2p,

M M M
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(2.9) M= —2(9+6p3—5ppr)) -

Then we obtain the relations between parameters and the four moments
which reduce, in case p=0, to Kendall [4]’s (6.4).
Next we consider the mean deviation of f(x) defined by

2.10) a={"_1o—pl f@xa= 2| @—nf@)s.

Integrating the both sides of (2.3) over (—oo, ¢) and using the relation
(2.5), we obtain

(2.11) Cot bt o) f() =1+ 2)|"_@—p)f @) .
Furthermore, from (2.5) | | ’ |
(2.12) (1+8by)pts= — (by+bye +byye*) .

Combining (2.10)~(2.12) we obtain the relation

14-3b. 1+4-3b.
2.13 —119 = =11 24,Ce? ™,
(2.13) d= 142, 2uf ()= Tron, e
. . . o ’ a+x

where g(x)=g(x; a, b, b, b,) is an indefinite integral of Sy

¢ is such a positive constant as
) -1
(2.14) c=c(a, by, by, b))= [S e’(”dw]

Thus we summarize:

LEMMA 1. The mean deviation of the Pearson distribution canm be
expressed by (2.13). Furthermore, these four constants are given by (2.7)
in terms of the mean p and the three central moments p., ps, .

3. The limiting distribution of the sample central moment vector

Let m be the sample characteristic vector corresponding to g:

m, —1—2 X:
n i=1
m, %g (Xi ml)’
(3.1) m= = y
ms ~—1-—2 (Xt m,)*
nint T
1 )
m, =2 (X—my)
n i=1
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which converges in probability to s. By elementary calculation we have

(3.2) E{ vVn (n—p)}=0+e., V{vn (m—p)}=D+D,
where e, and D, are a vector and a,matrix, whose elements are o( ~/1__> ,
n
o( 11?’ ) , respectively, and the matrix D is given by
(3.3)
i s m—3p3 ps—4paps
D= i p—Aaps =413
=3 ps—4mpn pe—6pp— 39— — B+ 1203
=y - =4 =S — B 1250 p— 8 — i+ 165

(see, for example, Cramér [2] p. 350).
For the later purpose, we shall prove the following lemma :

LEMMA 2. The sample characteristic vector m converges in probability
to p and the limiting distribution of «/n (m—g) is N(o, D).

Proof. The first assertion is clear from the relation (3.2). To prove
the second assertion, we divide this random vector into two portions;

(3.4) Va (m—p)= vu (—p)+ v (m—ii)
where
i m, ) i —LE X, )
n

m, 3 (X
(8.5) m= =

ity —:72 (Xi— (XK= p2) —3pt5)

ity %2 (Xe— )(Xi— ' —dpts]
Since
(8.6) ﬁ‘ (m—p)=—1;—§:;y¢

where
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xi—p
(3.7 yi= (Xi—p)'—pm
(Xi— (X — )" —3Bpts] — g

(Xi—m(Xi— ) — 4] — 14

and E{y;}=o0, V{y:}=D, the asymptotic distribution of vn (fi—g) is
the 4-variate normal N(o, D) by the multivariate central limit the-
orem (for example, see Anderson [1] p. 74).

On the other hand we can prove that each element of V{ v/n (m—
1
Jn
to 0. Thus by the convergence theorem we conclude that +7n (m—pu)
has the same limiting distribution as % (hi— ), namely N(o, D).

m} is at most o< > ; therefore /n (m—m) converges in probability

4, A consistent estimator and its asymptotic distribution

We put
(4.1) H(m)=H(m,, m,, m;, m,)
=ﬂ2ps{c(pu D3, D5y i) €xXD [9(vs; D1y D2r D3y D]}
1+2p,
where
(4.2)
T pu(my, My, Mg, my) | [ —my+msL1, ”
Di(my, My, My, M) I[m,(2mymy+mg) L+ (mi+my) L]
p=p(m)= Ds(my, My, My, M) | _ —L{(4mmy+my) 1, +2m, 1]
DMy, mg, m,) L[2m,I,+ L]
Ds(ms) mse
_ pi(my) 1 m, |
4.3) L=IL(m,, m,, my)= 1

2(9mi+6mi—5mym,)
L=1I(m,, m)=3m3+m,
L=1(m,, my, m,)=3mi—4m;m, .

By the lemma 1, we have

14-3b
4.4 H(p)=—"221 2 000=(
4.4) (&) 142, #5ce
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We shall show that the statistic H(m) defined by (4.1) is a consistent
estimator for the mean deviation d and that the sampling distribution
of v/n (H(m)— H(u)) is asymptotically normal.

First, we can easily calculate the partial derivative matrix of p
with respect to m as follows:

asn (B)=(2, @, B )
om am,” om,’ am,; om,
T—1 21, L 2m,1, -
—py  —2(mil—m,+1L) mik+mL—3m.I; (mimy+2moms—3mi)],
—| —2m dm.L—1, —2(mLy+ 1) 2(myms+my)l,
0 —2I I myl,
0 1 0 0
1 0 0 0 .
where
L=my[(9m; —b5m,) I, —12m, LI} =[(83m3 — 5m,)(m,+ p,) —12mm,p, I,
Li=3(m:L,+2ma L) Ii=3[my(m,+ p)) +2m3 L L ]1;
L,=6[m;3m;—2mym,) L+ (3m3;—mym,) ]I}
(4.6) = —6[3mymy(m,+p,) — (Bmi—mym)p,]1,
L= —2(9m;—6m}—bmym,) LI} =[24my(m,+ p,)+ L1,
L=12mm,LI1=12my(m,+ p,)],

L,=—6(4mi+mi)Ii=—2@2p,— L)1, .

Next, when we consider H as the function of parameter vector p,
which has, at least in a neighborhood of p,=p(u)=(a, b, b, by, s, 1),
continuous first and second partial derivatives, and furthermore each
pi=p{(m) is a partially differentiable function of m, we can calculate
the partial derivat!ives of H with respect to each m,(v=1, 2, 3, 4) by

oH _<aH>'< 3p’> ¢, 0H ap;
q =
S om, op am, ng ap; om,
—H[ Ihj(mly plv pﬁ! ps» p&)_ cj(pl, pz’ pa’ p4) } apj
(D1, Dss Dy D)
+ 1 ap4 i ams Di+m, aml]
1+2p,)1+3p,) dm, my Om, p+pm+pm: om,
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where each h;(x; p;, D;, 75, 2) is an indefinite integral of

09'(%; P, Py Py D) 0 [ itz )
0p; op; \ D+ D+ prt

and the constants c¢;(p,, 1, D5, D) are given by

0
4.8) —¢;(p1s Do D5y D) = T(Pn sy D3y i)
i

=—c(py, Py Dy pos_m hy(@; Py P i ) €xP [9(2; Py Doy D3y PR,
which are also partially differentiable with respect to m. Then we can

use the following Anderson’s lemma ([1], p. 74, Th. 4, 2. 8), which was
essentially proved in Cramér [2] (p. 366).

LEMMA 3. Let U(n) be an m-component random vector and b a fixed
vector. Assume that U(n) converges stochastically to b and +/n (U(n)—b)
18 asymptotically distributed according to N(o, T). Let w= f(u) be a real-
valued function of a vector u with the first and second derivatives in a
neighborhood of u==5b. Let —Q‘g’iﬂ . be the i-th component of @,. Then

T u=
the limiting distribution of +/n [f(V(n))—f(b)] is N(o, &,Tg:).

Combining the above lemma with our lemmas 1 and 2, we obtain

THEOREM. Let ,, a,, « - -, %, be the sample from a population having
probability density function f(x) defined by (2.1). Let m be the sample
characteristic vector defined by (3.1) and define the statistic H(m) by (4.1).
If we assume the ewistence of the 8th order moment, then the sampling
distribution of /n (H(m)—d), where d is defined by (2.13), is asymptotic-
ally N(o, ¢'D¢p), where D 1is given by (3.3) and the v-th element of ¢ by

(4.9) ¢,=[M]m=,‘

om,

=d Lé:l (hj(l‘) _cc_j>N"' + a +2b3,(‘i +3b,)

N, atp ]
+ N |»
Ha b, +bx#+b2ﬂ’ ’

where h;(x)=h,(x; a, by, b, by) i3 an indeﬁniie integral of

[ 0g'(x; p1, Dy Py, i)

3 ](pn ‘ps’ D5, D) =(a, by, by, by)’
D;

and c, c; are given by (2.14) and (4.8) replacing p,, Psy Ps, Pi With a, b,
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by, by, respectively, and N,,=[aa%] _are obtained by (4.5) replacing m

with p. ‘
Consequently the statistic H(m) s a consistent estimator for the
mean deviation d.

5. Some special cases

In this section we shall calculate the vector ¢ given by (4.9) in
such cases as at least one element of the parameter vector p vanishes.

(i) b=b=0, b,<0 (normal case). We may consider, in this case,
the statistic H(m) given by (4.1) letting p,=p,=0(p;<0). Then

1 1
z+p),  elp, p)=——=
o, (x+p1) (1, 22) s

and using the relation (2.5) we obtain

g9(x; P, P) =

h(g)=h(g; @, b)=0, hy(p)=hs(r; @, by)=0

6 ci(a, b)) =0, & — cs(a, by) __ 1

¢ ca,by) ¢ cla, by) 2p,

Furthermore, since N;=N;;=—1, Ny;=N;=1 and other N,’s vanish,

d

h= 2 $,=0 (v+2),
127
rnon— (@ )’ . a
¢/ Dg=( ) = -
The statistic H(m) in this case can be expressed by
2 m,,
T
and we obtain
COROLLARY 1. The statistic
(5.1) VEZm, = 3w~y
T " i=1

from N(g, 6*) is a consistent estimator for the mean deviation
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(5.2) d=+/2 ¢
T
and its variance is given by

]

2n ne - \n

Remark. The variance of the sample mean deviation
LZ |2—7F |
n =1
is given by
2 (12 ) 4o 1)
n T n
(Kendall [4], p. 215), which is larger than (5.3) for large =.

(ii) b=0, b,<0. In this case

9(; D1y Py D)=2P P2 Jog (—p,—p) + PITPE <x> p’)
i3 3 Ds

2(p;P3—Pg)

2 t1 —
¢ Py Py B)=(—p3) 7 r <L%2£’_ +1) ;

Ds
where
I'(p)= SW e *dx .
(]

Using the relation (2.5) we can calculate

M- o 1]

bl
_C _ 1 Y _1_
ha(p2) b [ 08 - c]+ m
_C _ 2b—ab, Py _ o] 2b
h(12) . = [log B ]+ m,

where
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(st )

l

r( abll;:—b, +1)

¢'=c'(a, by, b)=

I'(p)= S: 2 (log x)e~*dx .

Furthermore, since

b 1 h
-1 O 0
] 2p,
—b —(2+2) £ o
a pj 2] 2:”3
N=(Nj,,)=([—am"]m=,‘>= 0 __ﬁ' _ 1 0 ,
2] 2
0 0 0 0
0 1 0 0
1 0 0 0 |
we get
¢’D¢'— [J:J et LA
where

J=%§—[log 4—!;:2;——0’]

Ji=4phps —12pprspt5+ Opips — 24451, + 35153443 + 36,423
Js=2p5p— S+ s — 12450+ 151415+ 185
Jy=pupts— 2ppnpes+ phpn — 61p +- 614305+ 91

(= bo—byyi )(abl—bo)/bze(bo+b1#)/b’

by~ 'r ab;—b
(— b)(z( b3—bg)/02)+ ( 1 —by +1)
b

-5(48)%) (34,

Especially, when a=—(v—2), b,=0, b= —2(X*-distribution with » as
the degree of freedom which we denote by X(v)), by the relation
(2.5) we can calculate

d=H(p)=2p
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s ey ] Lo - F]

(5.4) Ji="T68v4(v*+12v+45)
J;=128,%3+* 4 38v+72)
Jy=640%3v* + 500+ 96)

(5.5) d=4(v/2e)"*I(v[2) .

Thus we obtain

COROLLARY 2. The statistic
1n_a_< 4mj )Mi/m%/ F( 4m§>
ms \ em; m}

Sfrom X(v) i8 a consistent estimator for the mean deviation d given by
(5.5) and <ts variance 18 given by

1 (v/2e)
n  vl(v[2) ‘

+ol)

where J' is given by

{3v’(u’+ 120+ 45)J " —2v(3v' +38v+-72) J" +(3* +50u+96)}

L Jr=log Y T'(v[2)
= T )

(iii) a=b,=0, b, b;<0. As before we obtain

g(x; piy D)= 21 log (—p,— p&?)

p;\
-1 —(— 1/20,+1/2( __ ‘\—1/2 L __I__L
& p)=(—py—pyB( L, — 1)
where
Bla, p)=| +~'(1—ay-dz
and

e ,
¢ D¢“W[J1J +JoJ+J5]
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where

J=—_3

G| o

B(a, ﬁ)=%3(a, 8)

Ji= 41400 — 318) [apts — deaprupts+ 48— i)
s =2 (s — 312)6 eapts + 2ptapdipss — 14 p5pnups — Aped + 6180+ 4edpsd]
Jy =93+ 6ppripts— Gpdppr + pd— Spapd+ 2uiph — Apiped

d=va o/ Pl )

2‘;5‘401:4) / ( ; ’ 2:‘—_-‘335 ) )

, we obtain

I t. l I ltt. b._...-— v N b_—_-— v
n particular, letting b, i h -

COROLLARY 3. The statistic

2 vV2mm(m,—3m})

1 2m,—3m?
s(me—mp( L, Em—Imi)
(m, H) 2 m,—3m;

Jrom the t-distribution with v as the degree of freedom is a comsistent
estimator for the mean deviation

=30/ P )

and its variance is given by

1 y
n 32!,(::—1)’(::—-6)(»—8)3’(—;—, ;)

X [7776(v—2)(v— 4) AT +77(v—2)BJ'+36C]+ o(%)

where
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Bl )
2’ 2
J' =1 v
R )
2’ 2

A= —Lt+28v—20
B=91*4869.*— 63511 20096v— 19776

C=385v"— 631+ 225, — 4,318v 1 2832.

6. Concluding remarks

(i) More generally, since any order absolute central moment can
be expressed as a function of mean and three central moments ([5]), we
can obtain by the similar method both the consistent estimator for the
absolute central moment and its asymptotic variance. For example,
since the 3rd order absolute central moment d; can be expressed by

_ 4[(1 +4bs)(a +)ps+ (1 +3by) 3]
(6.1) dy=ps— 4 F (1) + (11251 4by) f(y),

we obtain as a consistent estimator for this

Hy(m)=m;—4mse(py, Py, D3, D) S : exp [g(x; P, ps Pr D)l
(6.2)
4 A +4p) (2 +m)m,+(1+3p,)'mi]
(1+2p,)(1+4p,)

-exp [g(my; D1, Dy, sy D],

c(pl’ Psy Dy pi)

where

* D+t
Z; Dy Dsy Py = —_—
9(2; D1, sy Py 174.)' S—w.p,+p,t+p4t’

(D Py Py D)= {Slexp lo(z; 1, Ps Dy, m)]dx}—

and p, s, Ps, P« are the functions of the sample central moment vector
m given by (4.2). Moreover the asymptotic variance of this statistic
can be calculated along the same line as explained in section 4. Especial-
ly, we have

COROLLARY 4. The statistic
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2\/ msf’—zﬁ/ {—I—i x)’} "
n =1

Srom N(g, ¢*) 18 a consistent estimator for the 3rd order absolute central

moment |
a={" 12—t friz=2)/ Lo

and its variance 18 given by-

o L),

(ii) The statistic H(m) given by (4.1) is not necessarily unbiased.
But when we can find such constant ¢, depending on the sample size n
that

4
E{H(m)} ’

Cr=

we can define

H(m)=c,H(m)

which is an unbiased estimator for d. Furthermore the asymptotic

variance of ITI(m) is the same as one of H(m) because ¢,—>1 as n—>oo.
The same is true for the statistic Hy(m) given by (6.2). Particularly,
the statistic defined by (5.1) is not an unbiased estimator for d. On
the other hand, we have

COROLLARY 5. The statistic

)
) e

|
from N(u, %) is an unbiased estimator for the mean deviation and its
variance s given by (5.3). .
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