ON HIGH ORDER MOMENTS OF THE
NUMBER OF RENEWALS

BY YASUSHI TAGA
(Received Jan. 16, 1964)

Summary

Renewal equations and their solutions are obtained for high order
moments of the number of renewals in any finite interval of time. More-
over, as to two examples, the computational method for coefficients of
their series expansions in time is given.

1. Introduction

Concerning the renewal function associated with the Weibull distri-
bution, its evaluation in finite intervals of time by the method of series
expansion was treated in [1]. In treating the number of renewals in
finite interval of time, however, it should be noticed to consider its high
order moments with its expectation—the renewal function. Moreover,
such moments might be useful when considering the degree of approxima-
tion of the asymptotic normality for the distribution function of the
number of renewals in a sufficiently large interval of time.

2. Renewal equations of high order moments and their solutions

At first, we introduce some notations which are necessary later.

{X.} : a sequence of random variables, each being independently and
identically distributed according to a common distribution function
F(x) with a finite and positive mean.

F™(x): nth convolution of F(x), especialy FF(x)=1 and F®(x)=F(x)

N(x): the number of renewals in time interval (0, x],

n

i.e. N(x) =max {n; g X, <«x}.

H,.(x): rth moment of N(x), i.e. H(x)=E{(N(x))’}, r=1, especially
H(x)=E{N(x)} is called a renewal function.

I'(p): Gamma function, i.e. I’(p)=ra;”“e"‘dx.

B(p, q): Beta function, i.e. B(p, q)=g1 A—x) 'z 'dx
0

It is well known, that the renewal function H,(x) satisfies the renewal
equation,
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(2.1) H(@)=F@)+| He—ydFy),
and has the unique solution
2.2) H(w)=3 F™().

In [1] a computational method to obtain coefficients of a series ex-
pansion of H(x) was given when F(x) is the Weibull distribution.

In the following we shall give renewal equations of H,(x) recursively
defined in r, and show the existence and expressions of their solutions.
According to the above definition, H,(x) is given by

(2.3) H (w)=3 " {F(@)— F* @) .

To obtain the renewal equation of H,(x), let us make the convolu-
tion of H.(x) and F(x). Then we have,

2.4) | H@-ydF@) =35 (n-1) (F@) - Fo(@) .

and this is rewritten as

(2.5) |, Ba—piFe)=E@ +3( T )(-H_ @),

where H,(x)=F(x). Especially, in case when r=1, it reduces to the well
known renewal equation (2.1). Suppose that the functions {H,(x); 1<

k<r—1} are already known, and put W,(x):—é<:>(—1)’ +_s(x). Then

the equation (2.5) is rewritten as
(2.6) H@)=V,@)+| Ha—ydF@), r=1,2,3, -

These are the renewal equations to be satisfied by H,(x)’s.

Now we shall show that each equation of (2.6) has the unique so-
lution H.(x) with the following properties:

1° H,(x) is non-negative and bounded.

2°  H,(x) is monotone increasing in r and z.

First, we prove that the equation (2.6) has the unique solution in
the class of bounded functions. If two bounded functions H(x) and H/(x)
satisfy the equation (2.6), then the difference of these two functions,
G.(x)=H/(x)— H/(x), has to satisfy the following homogeneous equation :

@.7) G, (@)= S:Gr(x—y)dF(y) .

Therefore, it can be shown recursively that G.(x) must satisfy the equa-
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tions
2.8) G,(x):S G (x—y)dF™(y), for all n>1.
0

Since FF™(x) is the mth convolution of the distribution function F(x) with
a finite and positive mean, F'™(x) tends to zero as » increases for any
finite (fixed) value of x (see remarks in section 3). Therefore, from (2.8),
we can conclude that

2.9) G.(x)=lim S’G,(x—y)dﬂw(y):o, for all finite #=0,
n—oo JO

since G,(x) is bounded under the assumption that both H/(x) and H/(x)
are bounded. This shows the uniqueness of the solution H,(x) in the
class of bounded functions.

Next we shall show recursively that the solutions H,(x)’s exist and
have the properties 1° and 2° stated above. By the same method as
uses the so-called Liouville-Neumann series, it may be ascertained that
there exists at least one solution of (2.6) such that

2.10) H@)=¥,@)+3 | ¥.e-ydF@)

=¥ (r)+ S:W,(w—y)dHl(y) .

From the above stated, this solution must be unique in the class of
bounded functions. In fact, this is true for r=1, since ¥,(x)=F(x) and

H,(x)=i F™(x). Here, we suppose that the solutions {H,(x); 1<s<r—
n=1

1} have the properties 1° and 2°, and are expressed in the form
2.11) H @)= n' (F®(x)— F*™(@), 1<s<r—1.
n-—1
Then, it is easily seen that the function ¥,_,(x) is expressed as
(2.12) U (@)=> (0" —(—1)} (F™@)—F (@)},
n=1
which is clearly non-negative, bounded in «, and monotone increasing in
r. Hence, the solution H,(x), given in (2.10), is non-negative, bounded
in x, and monotone increasing in » and z. Moreover, it is ascertained

that the function H,(x) is given by

(2.13) H (@)= 3w (FO@) - F* @) ,
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and satisfies the equation (2.6) by substituting (2.12) and (2.13) into (2.6).
Thus the existence of the unique solution of each in (2.6), with the pro-
perties 1° and 2°, is ascertained. :

3. Series expansion

In practical applications of series expansion, we have to pay much
attentions to the speed of convergence and easiness of computation of
the coeflicients in a series expansion rather than its formal general theory
(see for example [3], [4] and [5]). In this section, we shall give two ex-
amples in which adequate series expansions can be found such that their
coefficients of series expansion of H,(r) are computed easily and recur-
sively.

m

Example 1. F(r)=1—e™, m>0, (Weibull distribution).
By the Taylor expansion of ¢°, we get

oo _ n—1
3.1 Fa)=5 D" @y
=S
Then, it may be supposed that H(x) is expanded in such a form that

_2 (DA
3.2) Hm=3 e

as is shown in [1]. Moreover, the coefficients {A,]} can be obtained re-
cursively by the relations

3.3) Ay= I8}
Ap=n —jé Aoy
where Te= ﬂ"ﬁ”;’b’_‘tﬁ_ .

Now, we try to obtain the coefficients {A4,,} recursively in r(=2).
By the same reason as stated above, it may be supposed that H.(x) is
expanded in the form

_S (=D)Aim
(3.4) e T

Then we can obtain, after some computations

* H o g dF ) = 5 (D2 |
65 | He-piFe) =3 o {zAr}

120

On the other hand, we obtain from the right hand side of (2.5) another
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expansion

o ( 1)’6—1 n
(3.6) [ H—-ydFa)= ™

x {A+i( -1y, +(=1rnl

From (3.5) and (3.6) we obtain the recurrence relations for the coefficients
{A.}:

A+ 5(7 )0 A —1m=0
r—1
4,43 (’S" )( 1A, o+ (=1 7= —Anp,
s=1
(3-7) Ara :;1 ( Z >( 1) Ar —s, 3+( 1) 7= —(A7271+Arlrz)
r k—1
+3( D)V At D n=—S .

For example, we obtain

A,=p(rzl),

An=p,—@2 =D (rz1),

Ap=r—2r7+7, As=r—6nn+571, As=r;—14pn+1971,
A= 75—30ran+ 6573, Ay=7,—62r,+ 2117’? , ete.

Example 2. F(x)= S —l—y" 'e=vdy, a>0, (Gamma distribution).

I(a)

It is easily seen that the probability density function f(x) and its
nth convolution f™(x) are represented as
-1

P

@ =7

f(n)(x) — P(’]':La)xnn—le—x .

Then we can obtain the expansion of the mth convolution F™(x)

- 1 ety _ 00 (___1)76 xna+k
3.8) Fo(z)= S T T E Tk T natk

Hence we get the series expansion of H(x) such that
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(3.9) H@) =3 F®@) =3 ) I‘(na)(kvt):a+k) o

which is the solution of the equation (2.1).
Now, it may be supposed that H,(x) can be expanded in such a
series as

3.10 @)=>S (=D)'BiY _ ness
(3.10) H/(x)= PPN Flna bk gtk

Comparing (3.9) with (3.10), we obtain the relation

v_ I'(ma+k+1) _ I'na+k) adk—i)=
@1)  Bw= I'(na)-(na+k)  I'(na) _JHI (na+k—=7)=Fu

which is easily computed. Therefore, we may suppose that all coeffici-
ents of F(x) and H,(x) are known. Moreover, it is convenient to repres-
ent the expansion of F(x) as follows :

oo l)kB A
3.12 Fi (= etk
(3.12) (x)= nZl = F(na+k+1)k'x
where B = Fgf(_i_)k) =i and B=0 for n=2.
Then

|, Ha—vare)=5 7 OB ey,

where S @—y)y**f(y)dy= 2—1(’( )l) , S:(w—y)"““‘y"“"‘dy

e Lt ) )

=i ( l)l F(na+k+1)r(a+l) DD
= Tl T+ latk+)+1)

Therefore, we obtain the expansion

|, Ha—u)dFa)

(3 13) :i i % (_1)k+zlw(na+k+l)p(a+l)B%)m(n+1)a+(k+t)
' S D(na+k+1)C(@l(n+1)a+(k+1)+1)k 1!

IS (_l)mx(n+l)a+m { (k+l) ! ['(a+l) B(T)}
k+i=m

- k1 ()

iz D(m+Latm+1)m !
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5:3 é 1“((75+BZT::::)W {:o( )‘3‘ "'“B""} :

On the other hand, from (2.5), we obtain

@19 [ He-wiFw=3 5 o ai’kmk, (51 )vBw] .

Comparing (3.13) with (3.14), we can obtain the recursive relations be-
tween B{’s

2( )( 1BL=0, r=1, m=0, for n=1, and

8=0

(3.15)
> ( . )(—1)'3;;-”:2 (’,’:)ﬁl,m-kBs:zl,k, rz1, mz0, for nz2.
8=0 k=0

The coefficients B$Y’s are obtained recursively as follows.

1) n=1
From the relation

5 (r )(—1)*Bsa-a>=o ,
8=0 8
we can obtain easily

B{R =B{R=pim, m=1.

2) n=2
From the relation

5 (5 )JcvBo=5 (T )b eBR,

we obtain the relation for r=1,

BO—B®= _o( )ﬁ, . ké,k =3 ( )ﬁx -

As B{)=p,» and BQ=0 for all m=0, we can obtain

m

(3-16) .Bzmzkgo (,’;: )ﬁl, m—lcﬁlh mgo .

In fact, we have:
»(m _&(m\ a+m—k) [I'(a+k)
k2=o< k )ﬁl m—kﬁlk—kg‘,( k ) I'(a) I'(a)

(m ) Bla+m—Fk, a+k)['(2a+m)
k Bla, a)[(2a)

Ms

-
[}

0
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=.M)_ 1 m m o Netm—kl ket
I'(2a)B(a, a) Soxz=o<k)(l x) Mokl tk=1g

1

=P B a)

S (1—2)y "z 'd =, .
When r=2, from the relation

B%fi 2B(l)+B(o)— 0< ),31 m— kBlk =2 ( ).81 m— kﬁlk_.Bzm ’

where B{)=8,, and B{}=0, we obtain B{2=38,,. In the same way, we
can generally obtain

B{=(2"—1)um , mz=0.

3) n=3
When r=1, the relation

BR-Bw=3 o( ),Blm BP=3 ( )ﬁl meiBoe=Bom

holds, and we .obtain B$)=8,, .
When r=2, the relation

BR—2BR+BR=3 (7 Ao nsBR=@ =133 ('} )6 n sbu=3n,
k=0 k=0

holds, and we obtain B{)=58;,. In the same way, we can obtain B&=
198sm, B§n=658;,, and so on.
4) n=4

We obtain, in the same way as above,

B =Bin, BiR="TBin, B&=39Fin, Bin=1808,n, and so on.
Generally, we obtain the coefficient BS, in such a form as
Bgrz:a(r)ﬁnm ’
where a{;)’s are some positive integers.

Remark It is necessary to state that F™(x) tends to zero as n in-
creases for any fixed value of x(=0) if the distribution function F(x)
has a finite positive mean, and that the two series
o ( l)kB(r) xnﬁk

L_QM_ =3

are absolutely convergent.
First, let us show that F™(x) tends to zero, under the condition
stated above. As is well known, FF™(x) is the distribution function as-
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sociated with the random variable Zn‘, X;, where X’s are independently
i=1

and identically distributed random variables with the distribution funec-
tion F(x). Therefore, from the weak law of large number, it can be
seen that, for any positive ¢ and §, there exists a positive number N(e, 9)
such that

n

LEXz—,al>6} <e, for n>NC(, 9),
n

i=1

P,{

where p designates the mean of F(x) and is positive. By putting é=
#/2, it is easily seen that

n i=1 2

P

13 Xi—pl>—‘u—}<s, for n>N<s, L) .
n i=1 2 2

Since F™(x)=P, {i‘,X } P,{ :L i}Xlg—fZ—} , we can choose n suffi- -
i=1 i=1

<z
ciently large for a fixed value of x#(=0) so that
Fo@=P | -5 X< 2<P [ Loxc ).
n i=1 n n i=t 2

This shows that F'“’(z) tends to zero as n increases infinitely. It is no-
ticed that the above result does hold only on the assumption that the
distribution function F(x) have a finite and positive mean p.*

Second, let us show that the two series for H,(x) are absolutely
convergent. In fact, it is ascertained by induction that

| A | S20+-97 if m<1,

and
2(r+k—2)r

1 = 1), if m=2,
‘F(km—l—l) - k! ca+o (C>1), it m2

in the series expansion

( 1)k l-A-rlc km
H,(x)= 21—F(km+1)m .

Hence, we can see that it is absolutely convergent for all values of x.
In the same way, we can evaluate

,  I(na+k)
) < (7 +k—-2)T ___2( +k—-2) Lt \naeThn)
| B | =2 B I (na)

’

* The author is indebted to Mr. K. Isii, The Institute of Statistical Mathematics, for
this proof.
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concerning the series expansion

© oo _l)kB(’) na
Hr —_ ( nk +k .
=5 & Toat ki) k1

Hence, it is easily seen that the above series is also absolutely conver-
gent for all values of z.
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