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1. Introduction

In the study of mathematical economics and operations research, we
encounter the problem of determining the function of the type

1.1) f@)= max [fi(x)+fi(=.)],

z), 2920

for given fi(x) and fy(x). We denote such f by f=fi®f;. Though this
problem can be treated by means of the theory of dynamic programming
([8]), we can find the function (1.1) more easily by introducing the
functional transform

(1.2) A (f)=F

with the property that

(1.3) A ([ @f)=A2(F)+ A (f3),
(11, 2D.

In the present paper, we consider the transform, which is a special
form of such transform (1.2) and is defined by

(1.4) F(y)= max [f @)—2zy] (¥=0),

and give both the largest class of f’s for which (1.4) can be defined and
its subclass for which the inverse transform of F(y) exists.
Bellman and Karush [1] have considered the transform

(1.5) M(f)=F
with the property that
(1.6) M(fiQfH)=M(f)M(f>)

where the symbol fi®f; designates a “ convolution” of two functions f;
and f,, defined by

F@®F(#)= max [£(@)fi@)]

zy, 2320
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They give an example of transform (1.5), namely
1.7) F(y)= max [~ f(@)]  (y>0)

and remarked that, to ensure the existence of (1.7), it is sufficient to
assume that f(x)=0(x°) for =0 where ¢=0. When the equation

S(@)—yf(2)=0

has a unique solution for each y>0, they have shown that there exists
the inverse transform of F(y) which is uniquely defined by

f (x)=r]p>ion [e"F(y)] (x=0).

Considering the inverse transform of (1.4), they also gave a very special
class for which the function (1.1) can be readily calculated ([2]).

We shall note that two transforms (1.2) and (1.5) are essentially the
same in the following sense :

log M(f,&Q f))=log M (f,)+log M(f))

and since

log fiPlog f;=log fiQ f:,

we have

Alog (i@fr)=-# (log f)+ -+ (log f) ,

which shows that both log-M and .# -log belong to the same class of
functional transforms such that

A ([i&f)=A"(F)+A47(f) .

From this it follows that our result is more general than theirs.

2. Theorem

Let f(x) be a non-decreasing function defined for x=0 which has a
continuous derivative f'(x). If there exists a non-negative number m
such that f'(x) is monotone decreasing for x=m and tends to zero as
x—oo, then a function (1.4) can be defined, and is a continuous, strictly
decreasing function of y.

Furthermore, the function

2.1) f *(w)=rgzigl [Fiy)+zy]l (2=0)

can also be defined, and for t=0 we have
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(2.2) f@)=f*x)
if and only if m=0.

3. Proof of the theorem

Since a function

3.1) g,(x)=f(x)—xy

is differentiable with respect to x, for each y>0, among the solutions
of the equation

(3-2) 9,(x)=f"(®)—y=0

we can find a value u=wu(y) of x at which the function (3.1) takes its
maximum value. If there is no solution of equation (3.2), then g,(x)<0
for =0 so that g,(x) takes its maximum value at =0. Therefore, put-
ting u(y)=0 in such cases and u(0)=co, we can define a function u=
u(y) for y=0, which is not necessarily unique. We shall denote by U
the set of y for which u(y) is unique. When y € U'=[0, co]—U, there
exist ux=ux(y)<u*=u*(y) such that

(3.3) 9,(x) <g,(ux) =g,(u*)=g,(u(y))
for 0<x<xy or x>,

LEMMA. The function u=u(y) 18 a monotone decreasing function of
y. If ye U, then u(y) is continuous at y. If ye U’, then

(3.4) }3{‘} wy)=u(y+0)=ux(y) ,
(3.5) yrﬁ wy)=u(y—0)=u*(y) .

PROOF. Assume that u(y)<u(y’) for y<¥y'. Then

9,(u(¥)) =9, (u(¥)+uWW —v)
< g (wyN+uy@ —v)
=g,(u(y") -
This contradicts the definition of u(y).
Let y€ U. Since g,(x) is continuous and takes its maximum value

at only a single point u, there exist a positive number ¢ and positive
numbers ¢, >¢, depending on ¢ such that

g,(x) is monotone decreasing for |u—z | <e,
g, (u)—g,(x)>c for |[u—x | =,
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g, (w)—g,(x)<c/2  for |[u—x|<e.

Let {I,I'} be the largest solutions of equations g,(x)=0, g,(x)=0, res-
pectively. By the assumption that f’(x) is monotone decreasing for x>
m and that f’(x) tends to zero as x—>oco, there exist positive numbers
0, =0,(y) and e, =¢,(d,)=¢,(y) such that I'<l+e¢, for ¥y >y—4,. Put

* — §5%(1) = mi 4

0*=0*(y)=min (60, m) .
Then, by the continuity of f’(x) there exists a positive number ¢ such
that | f'(w)— f'(x) | <d* for |u—=x | <e. Since f'(x) is monotone decreas-
ing for |[u—=z | <e;, for any positive number & less than e*=min (¢, ¢, &)
there exists a positive number d(less than 6*) such that

“for every ¥ with |y—y' | <J there exists x, such that |u—=z, | <e

and that f'(z,)=v'".” '
Now we can show that x,=u'=wu(y’), which implies that u(y) is continu-
ous at y€ U. Assume that x,#u’. Since f'(x,)=f'(w")=% and f'(x) is
monotone decreasing for |u—x|<e and |u—z, | <eZe,, we have |u—u' |
>¢ so that g, (u)—g,(w)>e, g (u)—g,(x,)<c/2. Since ¥y >y—d, 0<u'<
U'<l+e and since 0=z, <u+te<l+e, we have |u'—ux, | <l+e. There-
. fore, we have

9y (o) — 9 (W) =g(%0) — g, (W) — (¥ —y) (2, — %)
=[9,(w)—g,(w)]—[g,(u)—g,(x)]— ¥ —y || v, —u’ |
>c—ec/2—0(l+¢)>0.
This contradicts the definition of w'=u(y').

Let ye U'. Since g,(x)<g,(ux) for 0<x <ux, there exist a positive
number ¢’ and positive numbers ¢;>¢, depending on ¢’ such that

g,(x) is monotone decreasing for us—e/ <& <y,
gy(ux)—g,(x) > for 0<wr<us—s/,
0<g,(us)—g,(x)<c'/2 for ux—e/" <T<uUx .

Since f’(x) is monotone decreasing for ux—e’<x<ux, for any positive
number ¢ less than min (g, ¢, &) these exists a positive number & (less
than 0*) such that

“for every y’ for which 0<y’ —y<d there exists x, such that u,—
e<x,<ux and that f'(x,)=vy".”
As before, we can show that x,=w', which shows that (3.4) holds. By
using the fact that g, (x)<g,(u*) for x=u*, we can also show that the
relation (3.5) holds. This completes the proof of the lemma.

We shall now proceed to the proof of the theorem. It readily follows
that the function F(y) is strictly decreasing. For, if y<y’, then
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Fy)—-Fy)=g9,(u)—g,w)+u'(y —y)>0.

To prove that F(y) is continuous at y=0, we select a positive number
¢ arbitrarily. Then, by the continuity of g,(u)=f(u)—uy there exists
a positive number 4, depending on both ¢ and u, consequently on both
¢ and y, such that

[9,(w)—g,(w') | <e/2

for any %' with |u—u'| <4d,. It follows from the lemma that there ex-
ists a positive number 4, depending on 4,, ¥ such that, when ye U,

| u(y)—u(y') | <o,
and, when ye U’,
max ([u+(y)—u(®")], [uy)—u*@)])<s
for any ¥ with |y—y'|<d,. We put

4=min (52, 3, 2(Z€Teo)) ,

which depends on ¢ and y. Then, for every ¥’ with |y—%' | <d, we have
|Fy)—F@) | < lg,0)—g,(w) | + W' (' —v) |
<%+%=&
Finally, we prove that the function (2.1) can be defined for x>0
and that (2.2) holds if and only if m=0. We put
G(¥)=F(y)+zy=f(uy)—(uly)—2)y .

Since

G.(y)—G.(y) _ { S (@) — f () _y} UY)—UY) _ )+ 3
v—y u(y') —u(y) ¥ —y ’

when y € U, we have
G.(y)=—u(y)t+=,

and when y € U’, we have

Gi(y)=—ux(¥)+z,
G:(y)=—uw ¥ +x.

Then, to every x>0, there corresponds either v=wv(x)€ U such that
G:(v)=0i.e. w(v)=x, or v=v(x) € U’ such that G;(v)S0<ZGI () i.e. ux(v)<
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x=<u*(v). Therefore, G.(y) takes its minimum value at v=wv(x) so that
the function f*(z) can be defined by (2.1) for £=0. Concerning this
Sf*(x), we have

(3.6) SH@)=min G.(y)=G.(v)=F(v)+zv
= f(u(v)) —u(v) -v+arv=f(2)

when v=v(x) € U, and when v=v(x) ¢ U’, we have

3.7 FH@)=F)+zv=f(@)+F(v)—g.(2) = f(x),
where equality sign holds if and only if
(3.8 F(v)—g.(x)=0,

namely f'(x)=v for all  such that us(v)<zr=u*(v).

When noticing that f’(x) is strictly decreasing at x to which there
corresponds v=v(x) € U, we can conclude that, in order that (2.2) holds
for x>0, it is sufficient that f’(x) is monotone non-increasing, and tends
to zero for x>0 i.e. m=0. Conversely, assume that m=0. If there
exists such a interval [a, b] that f’(x)=v (constant) for all a<x<b, then
we have ux(v)=a, u*(v)=b so that (3.8) holds and consequently (2.2)
holds for a<x<b. To the point z at which f’(x) is strictly decreasing,
there corresponds v=v(x) € U so that (3.6) holds, and consequently (2.2)
holds. Therefore (2.2) holds for £=0. This completes the proof of the
theorem.

4. Remarks

(i) A more general transform than (1.4) is given by
Fy)=max [f(z)-2Y®)] (¥=0)

where Y(y) is some function of y. Therefore, when we consider the
transform defined by

(4.1) F(y)=r§§0x [fx)—z(y+e)]  (y=0)

where ¢ is any non-negative number, we can weaken the assumption
concerning the function f(x) of the theorem.

COROLLARY. If we replace the part “tends to zero” in the theorem
by “tends to c”, then the function (4.1) can be defined and is also a con-
tinuous strictly decreasing function of y. Furthermore, the function

fr@)=min [F(y)+xly+o)] (©20)
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can also be defined, and f(x)=f*(x) for =0 if and only if m=0.

(ii) When both f; and f, are non-increasing functions, we can also
find the function (1.1) in the following way.

First, we can find a point 2,=0 such that

max (fi(2,), fi(x.))=min (f1(0), f(0)).

Next, we seek the solution w=w(x) of equation
fiw)=fzx—w)
for each =2, For 0<x<x, we define
0  when f(0)<f(0)
¢  when f1(0)>f0).
Then the function (1.1) is given by
f@)y=rf(w)+ filz—w).

But this method is more complicated when the number of functions is
more than two.
(iii) Since the transform (1.5) is not linear, namely

M(f—a)zM(f)—M(a),
the relation (4.5) in [1] does not hold. But only the relation

. e"A(2)
f (@)= min 1-GG)

w=w(x)=

holds for such a function g that G(z)<1 for z=0, where A, G are the
transforms (1.7) of functions a and g.
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