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1. Introduction

In many problems of comparison and classification of ¢(=2) groups
with multiple characters, linear discriminant functions play an important
role. The special but important case is the treatment when the obser-
vations are assumed to be on random variables with multidimensional
normal distributions. Almost all the known work is based on this as-
sumption. Various results are available for the problems involving two
groups (e.g., [5], [4]), but if ¢>2 the procedure should be repeated with
two at a time from the g-groups. The purpose of this paper is to derive
expressions for the simultaneous computation of discriminant functions
in the case of g-groups when the r.v.’s may also have “ trend ” in them.
The explicit formulae will be useful for practical purposes since several
functions can be computed in one programming of mechanical computa-
tion. Moreover, the hypothesis testing problem for the g-groups when
again each r.v. has a multiple regression type “trend ” in it, is treated.
This latter account includes, for instance, the main results of the recent
paper [6]. However, the claim in the presentation of this result is not
so much for its newness (it may be equivalent to some known result in
a different form), but the novelty lies in the derivation which is based
on simple properties of idempotent matrices ([3], [8]).

After giving the statement of the problem and notation in the next
section, the derivation of the general test is presented in the following
section. The “several discriminant” problem is considered in section 4.
Then the classification problem is briefly discussed and finally an illustra-
tion of the test is given for some data.

Here a few words about the differences in the considerations of the
problems in sections 2, 3 and in 4 may be of interest. In the former,
where the hypothesis testing problem is treated, the null and the alter-
nate hypotheses considered are general, and no further restrictions other
than those mentioned in section 2 are needed. However, in section 4
some further a priori restrictions are imposed and there it is necessary
to ascertain (i.e. test) them before embarking the discriminant analysis.
The reason for this is, as explained at the beginning of section 4, the
problem as formulated in section 2 does not admit of discrimination since
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there are too many parameters. So the “ trend parameters ” are assumed
identical in all the groups. This was motivated by the desire to derive
explicit expressions for discriminant functions (which was done in section
4), and also by the physical situations illustrated in the numerical pro-
blem presented in section 4. Note that in the contrary case it would
be necessary to replicate the observations on each individual so that, in
heuristic terms, there will be “enough degrees of freedom.” Otherwise
the classification problem appears to get lost. Whether any other pro-
cedures are possible, and related discussions, have not been considered.

The notation itself is unfortunately quite formidable in the problems
of the type described here, and therefore brief commentaries are included
at various places so, it is hoped, that the reader will not be lost in the
complex computations.

The problem of this paper arose in 1956 in connection with a bio-
logical problem (of which the data formed a part), and the main results
were worked out for it in the summers of 1956 and 1957 (cf. [9]), but
the paper was not written up, for various reasons, until now. Though
in the mean time other papers and books containing related topics ap-
peared (cf., references), I believe that the present write up contains enough
material to record it in the literature.

2. Statement of the problem

It is first necessary to introduce some notation. Let X,,=(X,,, ++-,
X.,») be a (row) vector random variable (r.v.) corresponding to the rth
individual of a sample from the ith group, and suppose that X, has,
N[E(X,,), 3], the p-dimensional normal distribution with the mean vector
E(X,) and covariance matrix 3 which is positive definite. The functional
form of the means is assumed to be, for j=1, .., p,

E()(ur)=5u+amtur+ oo tausdiy,

where the ¢’s are the known parameters and the &’s, a’s and 3 are un-
known parameters of the distribution. Further the following matrices,
with their orders shown on the right, will be needed.

$i=($t1, cee., ip)) 74:1, e, q. (1Xp)
ay=(p, **+, ay), J=1, e+, k, (1xp)
ty=(bu, +, tim), I=1, «o+, k&, (I1xm)
(1) X=(Xi, oo+, Xn), (PX7)
Ti=(ta, *+-, tw), (n.xk)
A,;: (m;Xgq) matrix of ones in ith column and zeros
elsewhere,
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X=(‘Yl’ vy q)9 n=n;+ <.~ +nqy (pxn)
TAL A e AT
T, 0 ++¢ 0

(2) A=| 0 T, ««- 0 |, (vxn) (v=qk+1))

$,=($;’ e, e(,’p a;l; b aIk! a;l’ **y a;k, ey a:zk)! (va)'

Using this notation, the form of the means given in the preceding
paragraph can be written more compactly as

(3) E(X")=A¢.

The problem is to test the hypothesis that the & satisfies certain linear
constraints under the assumption of independence of X, for all ¢ and »
and the normality of the distribution as stated above. The hypothesis
can be stated as

(4) H,: Ct=yn vs. H: Cé=y*#y, Cis (g*Xv),

where C, 5, and 7* are appropriate matrices. For instance, if H, states
that the groups are identical (the usual null hypothesis, also considered
below in the numerical problem) then =0, »* is the quantity under H,
(#0) and C is:

T 1 —1 Qees0 { : ' : : —
I | | 1 !
—1 01000l ol
: S T A A R
0 . -0-11; E i | i a*xv
() C=| -—--mm - == :-——-{~-——1———— v (4
________________ | T AU R
0 A
1 |
L _ |____|____|-——-|__.__:<___
i 0 010 feee =i J0

where J, is the (kxk) matrix all of whose elements are unity. If H;is
rejected, then a given individual is to be classified into one of the g¢-

groups. For this, the (g) discriminant functions of the g-groups are

needed. It should be noted that in the present problem X, are not identic-
ally distributed for each ¢, which presents a different situation than the
classical problems on discriminant analysis.

In the next section the testing problem and in the succeeding one
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the discriminant functions are treated. Then the classification procedure
is discussed.

3. Testing the hypothesis

The result to be given here is a multidimensional extension of some
results presented in [8]. It can be stated conveniently in the following

THEOREM 1. Let X be a matrix of n independent random vectors
from gq-groups each of size m;, 1=1, +++, q, (R=n,+ <+« +n,) and each
vector having a p-dimensional normal distribution N[E(X,;), 3], where

E(Xifr)=$ﬁ+ailjti1r+ e +atkjtikn j=11 e D, 7'=1, e, Ny,

the &'s, a’s and > being unknown and t’s known parameters. If the
integers m, p, q, ¢* and v, introduced in (1), (2) and (4), are such that
*Zvn—p and rk(A)=v, rk(C)=g* (rk=rank), then an appropriate
eritical region for testing (4), i.e.,

H,: Cét=yn vs. H: Cét=yp* (#7p),
18 given by
( 6 ) Ué Up.q*. (,,_.,)(0) ’

where U, ,.(0) is the Gth point of the distribution of U with p, q, n as
parameters and where (| | stands for determinant in this paper)

S| -
v=—181__ s—xmx,
(7) | S+S*|
S*=XDX'—XBp—y'B'X'+7'B'By ,

S, S* being independently distributed. Here the (nxn) matrices M, D
and (nXq*) matrix B are given by
(7)) M=I-A(A'A)7'A', D=A(A’A)'C'[C(A’A)'C'I'C(A’A) A/,

B=A(A’A)~'C'[C(A’A)'C'].
The r.v. U defined in (7) is distributed as the Wilks’ U statistic with
p, ¢*, and (n—v) as parameters if H, is true.®

 Remarks. (1) It is to be noted that all quantities given in the
theorem involve only the original and not transformed variables. This
will be very useful in computing U, and the data can be used for other

*) ¢*>v is possible, but then C has to be partitioned and the result of Theorem 1 can
be used for that part of C which has full rank.
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purposes, e.g., for discriminant functions, and others.

(2) From the general theory of likelihood ratio tests it follows
that the above critical region is also unbiased ([1], p. 224). Next, bas-
ing on the independent r.v.’s S, S*, one can easily obtain confidence
regions for (y*—z), if desired.

PROOF. Let Y'=X'—A¢, sothat E(Y")=0 and E(YY")=n3). The
procedure to test the hypothesis H, of (4) is to obtain independent esti-
mators that are unbiased and functions of the maximum likelihood (m.l.)
estimators of the common covariance matrix >} (i) irrespective of the
hypothesis and (ii) when H, is true, and then to apply the likelihood
ratio principle. This is done in two stages as follows.

To find the estimator of 37 in (i), it will be necessary to find the

m.]. estimators £ of &, and because of the normality of the distributions
this is equivalent to the least squares (Markov) estimator which is ob-
tained by minimizing

YY'=XX'—XAt—-&8A'X +E&(A'A).
This is well-known and the next line is added only for completeness.

Since (A’A) is positive definite, under the hypothesis in theorem, Y'Y’
can be written equivalently as

YYIZXM'XI_I_[(AIA)IH&___(AIA)—1/2AIXI)]I[(AIA)[/2$_(AIA)—I/?AIXI] s

where M is given in (7’). This is a minimum relative to ¢ only if £=¢
where

(8) Z=(A'A)"A'X.
Denoting by 17'=X’—A§=MX’(=MY’), one has
(9) YY'=xmMx' (= YMY)

where M is symmetric and idempotent (i.p.), i.e., M*=M. From the pro-
perties of these matrices listed in [3] (see also [8]), which will be used
freely here®, it is seen that I—M is also i.p. and is of rank », and that
rk(I—M)=rk(I)—rk(M). It follows that rk(M)=(n—v). Since the co-
lumns of Y are independent, the following result obtains.

(10) E(YY)=E(YMY")=Str(M)=(n—v)3

where tr(M)=rk(M) for i.p. matrices is used (tr=trace). Writing S=

Y7, it follows that S/(n—v) is an unbiased estimator of 3}, based on
the m.l. estimator and S(=XMX’) has a Wishart distribution with (p,
n—v) as its parameters. (This is a consequence of i.p. matrices in “ nor-

*) The reader may like to consult [3a] in this context, which has more details and
results than [3] or {8], on i.p. matrices.
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mal quadratic forms”, ef. [8] and [3a]).

Now to find the estimator of 3 in (ii), i.e. if H, is true, it is again
necessary to find the m.l. estimator &* of & when (4) holds. This is in-
volved but can be obtained from Theorem 1 of [3], and the resulting
expression is given by

(11) Bx= (A’A)A' X' —(A’A)C'[C(A’A)'C'T'C(A’A) A’ XY
+(A’A)C'[C(A’A)'C' ™y .
It should be noted that the'corresponding result in [3] is given when ¢,

and hence X and 7 are only vectors instead of matrices as here. How-
ever, a glance at the proof shows that the same is valid even if ¢, X,

7 are matrices and the more general result (11) obtains. Thus if Yv=
X'— A&, then

a2) PH=X'— AE4DX'—By=P'+ ¥

where D, B, and y are given in (7’), (4) and ¥ at the beginning of the
proof and where Y’'=DX’ —By. Substituting X’=A£+ Y’ one obtains
after a slight simplification,

(13) Y'=B(Ct—7)+ DY’

so that E(Y’)=0 if H, is true and B(p*—7) otherwise. Since DB=B,
and D is a symmetric i.p. matrix, it follows that

(14) YY'=YDY'+YB(Cé—n)+(Cé—YB'Y'+(Ce—7)B'B(CE—7),
and
E(YY')=3tr(D)+(Cs —y)B'B(C§ —7),
=¢*>+(Cé—n)B'B(C§—7) ,

using the fact that ¢r(D)=rk(D)=q*. Thus if S*=YY’, then S*/q* is
an unbiased estimator of 37 if H, is true, and otherwise its expectation
is increased by a positive (semi-) definite matrix. Now S and S* are
quadratic forms in Y, each is distributed in the Wishart’s form, [3],
(the latter being non-central if H, is false). Since M?*=M, D*=D, and
both are symmetric and DM=MD=0, MB=0, the columns of Y being
independent identically distributed with p-dimensional normal distribution,
it follows from the theorems on “ quadratic forms on normal r.v.’s?”,
that S and S* are independently distributed. (The proof is not trivial
and is usually slurred over in many places. For a rigorous demonstra-
tion, see Linnik’s book, [7], p. 52, Theorem 2.3.8. There it is stated
and proved in the one dimensional case but a simple modification covers

the present one.)
Noting that S, S* defined above are the same as in (7), and if the
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r.v. U is defined as

15 U=—JtS81_

(15) | S+ S*|

then, by definition, U is distributed as U, * ._,, and has the properties
stated in the theorem, by the standard results in multivariate analysis
(e.g., [1], p. 193). This completes the proof.

Some special cases. There are some special cases of practical inter-
est which can be handled easily. If ¢*=1, then (m=n—v)

(16) F=(m—p)(1-U)/pU

has an F-distribution with p and (m—p) degrees of freedom. If ¢*=2,
then

an F=(m—p—1)(1—U")/pU™

has an F-distribution with 2p and 2(m —p—1) degrees of freedom. If
g*>2 then the distribution of U is complicated. Some asymptotic ex-
pansions and large sample theory is given in Anderson’s book ([1], p.
196, p. 208).

Though it is not of particular interest here, one can obtain confidence
regions for some functions of (p*—y) starting from the statement

(18) “reject H, if all ch[S*S—']=T,”

where T,=T(p, ¢*, n—v, 0) is the upper 6th point of the distribution of
the largest characteristic root of (S*S'). [ch=characteristic root.]

If all a’s vanish, then the r.v.’s in each group are identically dis-
tributed, and this case is the classical one, [10]. If in H, of (4), =0,
and ¢*=1, with ¢=2, (a’s being zero) so that C=[1, —1], it follows that
C(A’A)~'C' =(n,+m,)/nm,, and then (18) or a simple rearrangement of (15)
gives,

nmn, & &
19) mﬂz} E‘s dd, =T,
where S~'=(s?) and di=E8,—8,. (19) was derived by Fisher in a different
manner in [5].

If H, is rejected, then the classification question arises, and diserimi-
nant functions are useful for this. In the next section this problem is
considered.

4. Discriminant functions

Since the r.v.’s considered in this paper are not identically distributed
in each group, the usual procedure of constructing discriminant functions
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has to be modified. The method employed below is an extension of the
idea presented in [4], which reduces to the classical case if ¢=2 and all
a’s are zero. In this connection, (and the relation between the problems
of this and the preceding sections,) some detailed discussion of the intro-
duction may be recalled.

The method of construction of the diseriminant functions in the pre-
sent case is to apply the classical procedure to X, after the regression
“or trend” is removed from them. For this, the &-matrix must be par-
titioned into the means and the regression parameters. It is noted that
the classification problem and hence the discriminant analysis will have
no content if the a’s (the regression parameters) are not the same in
all the g-groups. Thus it will be assumed (or tested) a priori that the
a’s are the same for the g-groups and only &,’s may be different and
then discriminant analysis will be carried. Even then however the r.v.’s
are mot identically distributed in each group. The matrices in (1) and (2)
take the following form.

(20) F=(8, oee, &1y oen, ) =(F: o), (DXD), D=q+F.

This induces corresponding partitions in A, é’, 7 where

A’:[A‘: A; es e A;:l , (,‘bxn)
T;T;e T,

and similarly C (and 7) in (2) and (4). The partitions related to (20) are
(1) A=[A*: A% C=[C.: C), ¥=[7:7].

If X*'=X'—A%*a, then E(X*)=A*;. The m.l. estimator & of Z, from
the theory of the preceding section, is given by

@2) E=(AM A% A¥(X' — A3)

where a is the m.l. estimator of a obtained in (8). From the standard
theor/'\y of linear estimation (or even by a direct computation) it is seen

that ¢ is an unbiased estimator of & If d=C&—7, then it is the matrix
of r.v.’s representing the “deviations from H,.” (H,, H, have are as

in (4) with & of (20) for £ there.)
Since for g-groups there are q,= (g) possible discriminant functions,

the problem is to find a coefficient matrix L, (¢. Xp), with linearly in-
dependent rows, such that the resulting discriminant functions Y'(x)=
L&* best discriminate the groups. Here #* corresponds to the measure-
ments on a row vector of X*. Geometrically this means that the g-samples
are simultaneously mapped linearly into a g, dimensional (cartesian) space
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such that the resulting “scatter ” is as far apart as possible. The ori-
ginal “between” and “ within ” scatter matrices become now LS*L’ and
LSL'. The L will be determined later. (Note that S* and S are the
same as S* and S with A, C, 7 replaced by A4, C, 7.)

LEMMA. Consider q groups of m,, «++, n, r.v.’s each of which has a
p-dimensional normal distribution as in Theorem 1 and n,+ +++ +n,>
p+q+k, k being the order of regression. Then in order that the mazx-
tmum possible number of discriminant functions for q groups be com-
putable simultaneously it is necessary that ¢<(1+ +/8p+1)/2, and it is
sufficient that q be the imtegral part of (1+ +/8s+1)/2 where s is the rank
of S*, the “between” scatter matriz of the groups. (Here computable
means all matrices occurring in the expressions have full ranks.)

PrOOF. It suffices to remark that, in the procedure for all the com-

putations of the discriminant analysis, (LSL’) must be non-singular with
probability one and this gives the first inequality. The second inequality

is likewise obtained from a consideration of the rank of S*.
Let w be the rank of C of (21). Then uw=<min(q, ¢*), where g* is as

defined in (4) but replacing C by C. If u<g*, then C must be partitioned
such that C, is of rank u, with a corresponding partition for 7 as,

- Cu : Clz * - ,
(23) C=|---=-——|, Cu: (uxq), 7=0:7).
C21 ! sz q

*_u

Moreover the discriminant analysis becomes nontrivial only if p>2. This
is assumed. The general result of this section is stated in the following

THEOREM 2. Suppose the r.v.’s X, (J=1, coe, p, r=1, ¢oe n,;, i=
1, ---, q, p=2) satisfy the assumptions of Theorem 1 about the form of
the means and the distributions together with rank conditions of the mat-

rices X, A, C., (i.e, v is replaced by ¥). Then out of the possible number
of discriminant functions, ¢g(q—1)/2, among the qg-groups, u(<q) functions
are simultaneously obtainable and they are given by (im vector form),

(24) Y'(x, a)=(Cn? —7)8- (' —a'a’)
where Cy, 7, are defined in (23) and ? n (22). An explicit expression
Sor & is

?z(A*IA*)—lA*I(XI_A**&)

a=(UnA¥ + A A**) X'
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where
A, = —(A**’A**)(A**’A*)[A*’A*—A*’A**(A**'A**)'IA**’A*]“
W, =[AX A% — A¥ A¥(AX A%) I AX A*X]1,
The o' and a’ in (24) represent the measurements on an individual to
be classified, and S is the same as S of Theorem 1 with A for A.
Remarks. (24) gives u discriminant functions in one computation.
To obtain the rest of (g) , the procedure has to be repeated. This point

is discussed further at the end of the proof. Note that (2'—aa’) is the
“trend removed ” observation. (The proof has some points of contact
with [10], p. 577, and is condenced.)

PROOF. Let d,=C,é—7,. Then d, is a (v X p) matrix and represents

(E and 7, as in (24)) an appropriate part of d, introduced earlier in this
section. In view of the lemma, let L, be a (4 Xp) matrix of linearly in-
dependent (row) vectors to be determined for discrimination. The p-
dimensional scatters after the mapping in u-dimensions by L, give rise
to new scatters with the following expressions: (since p=2, u<q=<p)

(25) §*=lei[CII(A*’A*)‘IC;I]“dlL;=L1.§1*L; . S=L.3L , (say).

Now for the best dlscrlmlnatlon between the groups L, must be
chosen so as to maximize |S*S‘1 [, or equivalently to maximize IS* | sub-

ject to IS |=b, a positive number. This can be achieved by maximizing
the diagonal elements of

(26) M=3*—AS-v),

where S=¥ is the corresponding condition and 4 is a (% X ) non-singular
matrix of undetermined Legrangian multipliers. Then,

(27) oM =6L,S*L;+ L,S*sL;— AGGL,SL;+ L,SsL}) .

From this, the condition diag (6M)=0 gives on simplification,
(28) L.8x=4LS,

or from the definition of S¥ in (25),

(28" AL d[C(A¥ A% C 17 d S =L, .

Actually, it may be noted from (26)-(28) that A4 can be taken as the
diagonal matrix of u-positive eigen values of IS;“——ZS' |=0 which are dis-
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tinct with probability one (because of the continuity and non-singularity
of the distribution of X’s), and L, has its u-rows the corresponding eigen-

vectors. Thus from (28) it follows that the L, is d.S except for a
non-singular (in fact orthogonal) matrix. For uniqueness, the following
normalizing rule, which is customarily used in the classical case, will be
imposed.

(29) A LA [Cu(A¥ A¥)C, ] =1 .

Otherwise however if L ,=8 is a solution of (28) every constant multiple
of B is also one. Thus with (29), the functions Y'(x; a)=L.(«'—aa’) are
the required discriminant functions where f/1=d1§‘1, as stated in (24).
The explicit expressions for various quantities and other statements in

the theorem are now immediate consequences of the definitions and the
lemma given earlier. This completes the proof of the theorem.

Remarks. Since only u of the (‘21 ) discriminant functions obtain in

one computational program according to the theorem, the procedure has
to be repeated by replacing C, by other vectors in C. Since only the

linearly independent rows of C enter each time, using the standard facts
about the “invariance of bases” in vector spaces, it follows that the
same discriminant function results if the same pair of groups is included
in the computational procedure more than once. A different aspect of
discriminant analysis, in case all a; are zero, is discussed by Wilks [10].

5. Classification

Let Y, (%, @), 1, =1, +««, q be the possible discriminant functions for
the g-groups. Taking an observation (i.e. the pair (x, a)) on an indivi-

dual, one forms the (g ) values Y (x, a), 1<j, and then classifies him

according to the following rule.

Yz, a)<3[Y,()+ Y,(p)]+1og (zi/))
Assign to group % J=t+1, -er q
determined by : < and
Yz, a)>3[Y () + Y,(p)]+logz,/z;

G=1, oo, i

where =, 1=1, «++, ¢ is the a priori probability that the group 7 is
chosen. The boundary values may be decided by randomization ([2], p.
160). Here the mean values of the groups p(really (&, a, a)) are usually
unknown because of &’s and a’s, so one substitutes their estimators, i.e.
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§, a, from each group. If the sizes m, are “ reasonably large” this pro-
cedure leads to consistent results. Also the a priori probabilities can
be assigned in many cases from past experience. (The above procedure
then is a Bayes rule.) The probabilities of misclassification can also be
calculated. These points are well-treated in many books (cf; e.g., [2],
[1]), and no further discussion will be given here.

As an application of some of the results, an illustration is given
below.

6. An example

The following example is related to an experiment, conducted by Dr.
Josef Brozek of Lehigh University, to find the (physiological) differences
between children (only females data is considered here) on Losing and
Susak islands, near Jugoslavian coast, based on five ‘bony measurements’
with age as the trend variable. The environmental and other conditions
are approximately the same for the groups so that the model of section
3 above can be assumed to hold. In the notation of that section, p=5,
q=2, k=1, n,=102, n,=76. The raw sums of squares and products are:
(I=Losing, II=Susak) [symmetric matrices]

1{7102.0 1,053.1 13,953.4 1,471.3 1,788.9 552.4  2,317.27
11,474.7241 147,187.023 15,226.236 18,514.332 5,799.836 24,522.425
x1 1,927,789.24 201,474.31 245,021.08 76,156.99 320,617.75
I= x 21,255.03 25,809.95 7,976.29 33,486.01
x3 31,415.99 9,697.88 40,692.47
x4 3,017.32 12,667.63

X5 53,450.60__|

— 76.0 772.34 10,387.7  1,086.7 1,327.8 402.3 1,686.3 ~ |
8,304.9228 107,847.427 10,870.967 13,531.017 4,177.040 17,542.653
1,433,861.49 145,995.04 181,792.44 55,511.69 232,952.93

II= 14,985.43 18,642.47 5,655.15 23,707.77
23,238.88 7,040.71 29,509.30
2,152.39 9,022.82

37,917.49

In the above the row for “17” represents the “sums of the variables”,
and others the sums of squares and products. Here “¢” is the age, and
x, are bony measurements. The appropriate hypothesis H, is: C£=0,

where C= (1) _(1) (1) _(1)] . Next S*, S and U of (7) were computed.

They are:
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 29.84614 —12.71055 —2.54910 —4.45256 —7.40454
6.35040 1.00412 1.70040 5.70326

S*= 0.22479 0.39730  0.41080
. 0.70515  0.57201
_ 8.77337

— 5,559.22305 84.10554 218.61440 179.45464 1,005.47962 |
41.48064 6.498479  5.76309 42.68462

S= 75.82817  8.17419  28.27589
16.15017  41.75508
B 362.52820 _|

—__ISI___¢.77843
U= o T8

Since ¢*=2 and m=174(v=4 here), an exact test is possible by (17),

and F'=4.5 which is, as an F-ratio with 10 and 336 degrees of freedom,
significant at 1 per cent level. Thus the data show a significant difference
between the two groups.

The next problem is to compute the discriminant function using (24).
It was found that some of the a’s in the two groups differed significantly
and so the further calculations were not made. However, the application

of (24) to such data is straight forward. Note that for the S* and S,
the A will then be (nx38) and C=C,=(1, —1, 1, —1).
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