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ON THE OPTIMAL LIFE TEST PROCEDURES
BASED ON A COST MODEL

BY YASUSHI TAGA
(Received July 13, 1962)

1. Introduction

J. D. Riley demonstrated that the minimum expected cost for the

" nonreplacement life test procedure is always less than or equal to that

for the replacement procedure based on the cost model presented by B.
Epstein. (see [1], [2], [3] and [4]) Namely, it has been concluded that
the nonreplacement procedure is always more preferable than the re-
placement test procedure so long as that cost model is applicable. It
seems to us, however, that there are many cases to which Epstein’s
cost model is not applicable because of the variation of the cost corres-
ponding to the scale of test equipment. For example, there are many
cases in which the cost for depreciation or the running cost correspond-
ing to the scale of test equipment should be taken into consideration.

In this paper, a new cost model is presented which is applicable to
such cases as stated above and includes Epstein’s cost model as its
special case. Moreover, it is proved that the replacement procedure
may happen to be more preferable than the nonreplacement procedure
based on our new model, which is different from the result obtaind by
Riley. The optimal procedures (the optimum sample sizes) in our model
are given in Table 1 and 2 for various values of parameters and the
preassigned failure numbers.

2. Cost model

It is assumed that the time-to-failure distribution is exponential :
(1) F(x)=1—exp(—x/6), x>0, 6>0.

Then, it is well known that the accuracy of the estimate based on the
first » failure observations depends only on 7, and not on n, the number
of items placed on test, for a fixed mean life . Therefore the optimum
procedures, for a given accuracy, are determined by the numbers of
items simultaneously placed on test which minimize the expected total
costs for the nonreplacement or replacement procedures.

We shall denote the costs for the nonreplacement and replacement
procedures by Cyz and Cr, respectively. Let n, and n, be the numbers
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of items simultaneously placed on test in the nonreplacement and replace-
ment procedures, respectively, and let ¢, be the cost per item by placing
an item on test, ¢, the cost per unit time of waiting for the unit scale
of the test equipment. Then, it is assumed that the total costs Cyg
and C; are represented as

(2) Cyr=cim+ecniz, , for the nonreplacement case
and
(3) Cr=ca(ny+r—1)+eniz,, for the replacement case,

where r denotes the preassigned failure number, x, the time of occurence
of the rth failure, and a is some positive constant less than 1. (If
a=0, then this cost model is identical to the one presented by B. Epstein.
However, from our standpoint, it is assumed that « is positive. Moreover,
it is reasonable for a to be less than one from the economic point of
view.) The expected total costs are represented as

(4) GNR=01'”/1+02’”"1'0 12_1 K‘%“F]-— =c,;0 {ﬁnl'i"ni' f?} —’I_l.l—-—l?-—l_}
and
(5) Ca=oilmtr—1)+ems T = {Bna+r—1)+rns},

]

where f=ci/c,d. By differentiating the right-hand side of (5) with
respect to m,, we can obtain the minimum expected total cost C%* and
the corresponding optimum n¥ for fixed values of «, 3 and . In practice,
we obtain

(6) n;"=[’l‘(1—a)/ﬁ]‘/(2"“)
and
(7) C‘;‘;:cﬂﬁ{n;* (1+_1_1;) +(,._1)}_

However, it is rather complicated to obtain the optimum n¥ and the

minimum expected total cost C¥. from the relation (4) analytically.
(But their approximate values are obtained by making use of the formula

I 1
(8) gz—‘log (’n+5) +‘r,

where yr is Euler’s constant.) We computed exactly the values of the
right-hand side of (4) disregarding the constant factor c,f, and obtained
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the optimum =¥ and minimum cost C# for various values of a, B and
r. These values are shown in Tables 1 and 2.

3. Description of our assertion

We shall show that C% can be smaller than C%, if the value of

parameter a is sufficiently near to 1 and r=2. (In case r=1, C*¥=C%.
holds for any values of a and B.) At first, the following lemmas will
be proved.

LEMMA 1. For any positive integers r(22), n*(=7) and any positive
number a less than 1, there exists a positive mumber B such that Cy
attains its minimum C¥%, when n,=n*.

PROOF. Differentiating Cyz, given in (4), with respect to =n,, we
obtain

dC. B a 1 ’ 1
9 —ZNE —e,nd {4 - .
(9) dn, oo {n‘,‘ + My f=21 m—3+1 Jg'x (my—3+1) }

Then, it is easily seen from (9) that C,: attains its minimum when
n,=n* if the value of 8 is given by

r 1 a 1
10 —nX= - e — —_———
(10) p=n {E' W A n*—j+1}

which is always positive for any positive number «(<1), any positive
integers r(=2) and n*(=r).

LEMMA 2. For two fixred positive integers r(=2) and n(=r), the
tnequalities

(11) 14 (1—ﬂ) < (1— r—1 )"'1, 0<a<s,,
r j=1 n n

) 0. <axl),
hold for a switably chosen positive number 4,,(0<6,,<1).

PROOF. Putting @=0 or 1, the inequalities (11) are rewritten as

a2 L (1—9';1) s (1— "*1)", when a=0,
r i=1 n . n
and )
(13) 15 (1-J:L)">1, when a=1,
r Jj=1 n

which hold clearly for any positive integers »(=2) and n(=7). Since
the right-hand side of (11) is continuous and monotone decreasing func-
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TABLE 1.

Values of n*, m;* and

for a=1/2 (8=1/500, 1/200,

- B
\ e 1/500 e 1/200 e 1/100
, MR 64 0.3800 35 0.5180 28 0.6565
R 63 0.3800 34 0.5180 22 0.6564
s MR 8 0.4993 4 0.6822 30 0.8671
R 88 0.4993 15 0.6822 28  0.8670
. AR - 57 0.8204 37 1.0561
R 97 0.6060 54 0.8203 35 1.0560
I/ - — 67 0.9649 44 1.2306
R 112 0.7042 63 0.9649 10 1.2306
6 NR — — 76  1.0920 50 1.3943
R 126 0.7962 71 1.0921 45 1.3944
7 NR — —_— 85 1.2125 56 1.5498
R 139 0.8833 79 1.21%6 50 1.5500
g MR - 98 1.3276 61 1.6984
R 152 0.9664 86 1.3277 55 1.6987
o DR - = - — 67 1.8413
R 164 1.0462 93 1.4383 59 1.8417
10 DR - e — 72 1.9794
R 75 1.1232 100 1.5450 65 1.9799
n MR = = - — 77 2.1132
R 18 1.1977 107 1.6483 67 2.1139
12 DR - - = =
R 197 1.2701 118 1.7489 71 2.2441
13 DR -~ T - = o
R 207 1.3405 119 1.8467 75 2.3711
u DR - T = = e
R 218 1.4111 195 1.9422 79 2.4951
15 DR - - -
R 207 1.4782 131 2.0356 83 2.6165
16 DR - T - T =
R 287 1.5419 187 2.1560 8 2.7353
17 DR - - -
R 246 1.6063 172 2.2166 90 2.8520
18 DR - - T -
R 256 1.6694 148 2.3046 93 2.9665
19 DR — o - =
R 265 1.7314 158 2.3911 97 3.0792
o MR - - -
R 278 1.7924 159 2.4761 100 3.1900

(Remark) Values of n;* larger than 100 have not been calculated,



corresponding values of Cir/c,0, Ck/cs0
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1/100, 1/10, 1, 10, 100 and #=2~20)

ax 1/10 et 1 ar 10 apx 100
6 1.4981 2 41213 2 22121 2 202,12
5 1.4944 1 4.0000 1 22.000 1 202.00
8 2.0290 4 6.1667 8 33175 3 303.18
6 2.0247 1 6.0000 1 33.000 1 303.00
10 2.5163 5 7.8696 4 44167 4 40417
7~ 2.5119 2 7.8284 1 44,000 1 40400
18 2.9668 6 9.5518 5 55,106 5 505.11
9 3.0667 2 9.5355 1 55.000 1 505.00
15 3.3949 7 11,2143 6 66.001 6 606.00
10 3.3974 2 11.242% 1 66.000 1 606.00
17 3.8052 8 12.8588 7 76.860 7 706.86
11 3.8106 3 13.0415 1 77.000 1 707.00
19 4.2009 9 14.4869 8 87.687 8 807.69
12 4.2004 3 14.6188 1 88.000 1 808.00
20 4.5843 11 16.0409 9 98.487 9 908.49
18 4.5962 3 16.1962 1 99.000 1 909.00
22 4.9561 12 17.5537 10 109.262 10 1009.26
1, 4.9726 3 17.7735 1 110.000 1 1010.00
2, 5.3189 18 19.0578 11 120.016 11 1110.02
1, 5.4399 8 19.3509 1 121,000 1 1111.00
- — 14 20.5537 12 130.750 12 1210.75
15 5.6984 3 20.9282 1 132,000 1 121200
- — 15 22.0420 18 141.466 18 1311.47
16 6.0500 8 22.5056 1 143.000 1 1313.00
- — 16 23.5229 14 152.166 14 141217
17 6.3955 4 24,0000 1 154.000 1 141400
- — 17 24.9970 15 162.852 15 1512.85
18  6.7355 4 25.5000 1 165.000 1 1515.00
- — 18 26.4645 16 173.523 16 1613,52
19 6.0707 4 27.0000 1 176.000 1 1616.00
- — 20 27.8907 17 184.182 17 1714.18
19 7.4001 4 28.5000 1 187.000 1 1717.00
- — 21 29.3037 18 194,829 18 1814.83
20 7.7249 4 30.0000 1 198.000 1 1818.00
- — 22 30.7124 19 205.464 19 1915.46
21 8.0461 4 31.5000 1 209.000 1 1919.00
- — 28 32,1167 20 216,090 20 201609
22 8.3640 5 32.9443 1 220.000 1 202000

and this corresponding places are blank in Table 1 and 2.
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TABLE 2. Values of n*, ny*
for a=2/3 (8=1/500, 1/200,

X e 1/500 e 1/200 e 1/100
, DR S — 4 0.7923 25 0.9482
R 78 0.6261 39 0.7898 23 0.9433

; DR - — 56 1.0786 35 1.2047
R 106 0.8499 58 1.0737 32 1.2849

. MR - — 69 1.3371 4 1.6138
R 181 1.0556 66 1.3348 39 1.5995

s DR - — 84 1.5899 52 1.9143
R 155 1.2488 78 1.5802 16 1.8955

¢ DR - — 97 1.8258 60 2.2007
R 178 1.4326 89 1.8439 58 2.1773

; DR - - — 68 2.4758
R 200 1.6090 100 - 2.0381 60 2.4481

g DR - S 76 2.7418
R 221  1.7792 111 2.2546 66 2.7096

o MR - — - 8  3.0000
R 241 1.9442 121 2.4646 72 2.9634

10 > DR - S 91 3.2515
R 261  2.1048 181 2.6690 78  3.2105

n MR e o s Py
R 280 2.2614 | 141 2.8684 84 3.4517

12 NR 00 146 - 063n 20 e
R 299  2.4146 150 3.0635 89 3.6877

13 DR S 2 oman o 2 o101
R 318  2.5646 160 3.2546 95 3.9191

14 DR e 2 ~ T
: R 386 2.7118 169 3.4422 100 4.1462
15 DR e e 2 core ~
R S54 2.8564 178 3.6266 106  4.3695

16 MR e 2 moan = e
R $71 2.9987 187  3.8080 101 4.5892

;7 MR - — - — - —
R 388 3.1388 195 3.9866 116  4.8058

18 NR py 70 L Teo7 o1 Py
R 405 3.2769 204 4.1627 121 5.0192

19 DR = T  aen -
X R 422 3.4131 212  4.3365 126 5.2299
s DR - S — - —
R 489 3.5475 221 - 4.5080 131  5.4380
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and the corresponding values of Ciz/cif, Ck /e
1/100, 1/10, 1, 10, 100 and r=2~20)

w110 e L ax 10 ax 100
6 1.8107 2 4.3811 2 22381 2 202.38
4 1.7599 1 4.0000 1 22.000 1 202.00
8 2.5381 4 6.7298 3 33.84 3 303.81
6 2.4510 1 6.0000 1 33.000 1 303.00
11 3.2121 5 8.7525 4 35.250 4 405.25
7 3.0910 1 8.0000 1 44.000 1 404.00
1, 3.8548 6 10.7878 5 56.677 5 506.68
8  3.7000 2 9.9685 1 55.000 1 505.00
16 4.4685 7 12.8288 6 68.090 6 608.09
10 4.2850 2 11.7622 1 66.000 1 606.00
18 5.0640 9 14.7501 7 79.488 7 709.48
11 4.8475 2 13.5559 1 77.000 1 707.00
21 5.6411 10 16.6327 8 90.871 8 810.87
12 5.3943 2 15.3496 1 88.000 1 808.00
28 6.2041 11 18.5175 9 102.240 9 912.24
13 5.9276 2 17.1433 1 99.000 1 909.00
25 6.7555 12 20.4032 10 113.595 10 1013.60
1, 6.4491 3 18.9336 1 110.000 1 1010.00
28 7.2963 1} 22.2382 11 124.937 11 1114.94
15 6.9603 3 20.6270 1 121.000 1 1111.00
30 7.8263 15 24.0314 12 136.265 12 1216.27
16 7.4622 3 22.3203 1 132.000 1 1212.00
32 8.3481 16 25.8254 13 147.582 13 1317.58
17 7.9559 3 24.0137 1 143000 4 1313.00
3, 8.8624 17 27.6195 1, 158.888 1} 1418.89
18 8.4420 3 25.7071 1 154.000 1 1414.00
36 9.3697 18 29.4136 15 170.182 15 1520.18
19 8.9214 3 27.4004 1 165.000 1 1515.00
38 9.8707 20 31.1582 16 181.406 16 1621.47
20 9.3944 4 29.0794 1 176.000 1 1616.00
40 10.3656 21 32.8896 17 192.741 17 1722.74
21 9.8618 4 30.7093 1 187.060 1 1717.00
43 10.8547 22 34.6210 18 204.005 18 1824.01
22 10.3239 4 32.3393 1 198.000 1 1818.00
45 11.3385 28 36.3523 19 215.261 19 1925.26
22 10.7808 4 33.9693 1 209.000 1 1919.00
47 11.8175 24 38.0832 20 226.508 20 2026.51
28 11.2327 4 35.5992 1 220.000 1 2020.00
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tion in a for fixed » and 7, it is easily seen that for any positive
integers 7(=2) and n(xr) there exists a (unique) positive number 4, ,
such that the inequalities (11) hold. More explicitly, 4,, is given by

14) 0,,=1+log [—-1— Zr} (1——'7.—5'%—) _l:l/log(l— r;l ) .

r =

~

LEMMA 3. For a fixed positive integer r(=2) and for all positive
integers n(=7r), the imequalities

1s) TR -5 <7 osaecs

>) | , (6.<a<l),
hold for some positive numbers 3, and 3,.
PROOF. By Putting
§,=inf 57,7» y gr=sup Oy
where d,, is given in (14), it is easily seen from lemma 2 that the as-
sertion of this lemma is valid.

THEOREM 1. Let r(22) and n*(=r) be any positive integers. Then
there exist infinitely many pairs of a and B such that the inequalities

(16) Ct.>Ck Ci. <C%,

hold and that Cyz(Cr) attains its minimum at m=n*(n,=n¥=n*—r+1).
For example, if a satisfies 0%, <a<1 (0<a<d¥*,), then (16) necessarily
holds, where ’

17 %, =1+log [l . (l_gnTl)] /log' (1_ n*1 ).

r j=1 ;

PROOF. By the above definition of' n*, we obtain from (4)

(18) Cho = {ﬁn*+n*"" >3 (1— Jn*l ) }

(The existence of §B satisfying (18) is seen by lemma 1.) By putting
m=n*—r+1 in (5), we obtain

(19) | _R=c,ﬂ{ﬁn*+n*"'1r(1—‘.r";1 )"").

Comparing (17) with (18), it is readily seen that C%<C.<C%*. hold,
only if the inequality
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j=1 n*

holds. By lemma 2, the inequality (20) holds if &*,<a<1, where ok,

is given in (17). The inequality C¥,<C¥ can be proved in the same
way as stated above.

THEOREM 2. Let r(<2) be any positive integer. Then there exist in-
finitely many pairs of « and B such that the inequalities (16) hold.

Especialy, if a satisfies 6¥*<a<1 0=a<d¥), then (16) mecessarily hold,
where

(21) o¥=inf 3%,,  o¥=supdk,,

oF, being given in (17).

PROOF. This theorem is obtained as an immediate consequence of
theorem 1 and lemma 3.

Remark 1. Since it is easily seen after some calculations that the
inequalities

22) 1— Jog (r+1)/2 <pr<ir<1-1
log r - r

hold, we obtain the following corollary :

Suppose that r, a and B are given. A sufficient condition that
C#:>C% is a>1—(1/r). A sufficient condition that Ck,<C¥% is that
a<l-log [(r+1)/2]/log r.

Remark 2. In the special case that r=2,

1-L—05, 1_1og(r+1)2 _4 430
r 7 log r
Therefore, 5,";R>C: whenever 0.5<a<l, and C¥*,>C* whenever
0<a<0.432. !

4. Conclusion

Under the cost model, presented in this paper, the optimal pro-
cedures (the optimum sample sizes and the minimum expected costs) in
estimating mean life § have been investigated and the relating tables
are given for the nonreplacement and replacement cases. Roughly
speaking, it is shown that the nonreplacement procedure is more pre-
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ferable than the replacement procedure when the parameter « is suf-
ficiently near to zero, and that the replacement procedure is more
preferable than the nonreplacement procedure when « is sufficiently
near to one.

In practical applications, the parameters a and 3 must be determined
at first, and then the optimal procedure can be determined based on
our model. It seems to us that a is determined to be near to one in
most applications, from the economic point of view. Then the replace-
ment procedure is more preferable than the nonreplacement procedure
_ in such cases.

If the mean life 4 is not constant parameter but a random variable
subject to some prior distribution, then it is necessary to replace ¢ by

the expected mean life  in the above discussion.

We shall treat in the near future the optimal procedure for testing
mean life 6 by introducing the terminal loss in addition to the sampling
loss stated above as the cost model. It is decisively important, we
believe, in the life test procedures to obtain the optimum sample size and
the failure number minimizing the total expected loss under the suitably
chosen loss function.
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