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1. Introduction and summary

In the spectral analysis of stationary time series it is well known
that the periodgram is an inconsistent estimate of the spectral density
funetion. As is well known and will be seen in the following sections
of the present paper, this inconsistency is another expression of the
“undamped oscillation”’ of the sample autocovariance function. The
‘“‘undamped oscillation’’ of the sample autocovariance function was well
investigated by many statisticians, especially by Bartlett [2]. Nevertheless,
it seems to the present author that in the recent investigations of the
method of spectral analysis, such as those reported in the recent issue
of the Technometrics [Vol. 3, No. 2 (1961)], the practical importance
of the results obtained earlier is not fully recognized.

In this paper we shall give a heuristic exposition of the statistical
property of the sample autocovariance function to see that for a sufficiently
large number of lags the sequence of the sample autocovariances may,
under appropriate conditions, be considered to be a stationary stochastic
process which has a spectral density function approximately equal to
the square of that of the original process. Taking into account of this
fact we shall give a warning as to a possible misinterpretation of con-
sidering the observed sample autocovariance function to suggest the
existence of a ‘‘beat phenomenon’’, where the true power spectrum has
a unimodal density.

We can show, further, that the ratio of the root mean square of
the amplitude of the undamped oscillation of the sample autocovariance
function to the power or variance of the original process is minimum for
white noise. This suggests a way how to see the effect of the prewhiten-
ing operation advocated by Tukey [3]. Indeed, in this way, we can get

*) A part of the results of this paper was announced in February 8, 1961, at the weekly
meeting of the Institute of Statistical Mathematics.
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much information concerning the truncation point in the computation
of the sample autocovariances to get an estimate of the power spectral
density function. With the aid of numerical examples we shall show that
the prewhitening operation has, as was frequently pointed out by Tukey,
far more importance in the practical application of the spectral analysis
than the choice of the spectral windows.

It will also be briefly mentioned that the prewhitening operation
brings more important effect to the estimation of the frequency response
function by using the cross-spectral density.

2, Undamped oscillation of the sample autocovariance function

In this section we shall give a simple heuristic exposition of the
‘“‘undamped oscillation’’ of sample autocovariance function. Extensions
of the result to more general cases will be straightforward.

Now, consider the stationary stochastic process {X,} which is defined by

D G N N ERRY N 1)

where a, :++ a, is a given set of constants and {c,} is a purely white
noise of which &, has zero-mean, unit variance and finite fourth order
moment.* Such a process is known as a process of moving summation
and if we define R(h)=FEX,,,X, the spectral density function of the

process is given by p,,(f)=k_i, e " IPR(h)=|ayt+a,e” ™ 4 oo a7 P

(3=f=—14%). Now we define the sample autocovariance function C(j) by

Cl)= 3, XariXs *®
Nn=-l n+j<dn

where N is a given positive integer.
Then, from the defining relation (1) of the process we have

T Zl Xa+JX ao Z 6n+JX +a1 E 5n+:-—1X +oeee +ak E en+.1—kX
If we define

. 1 &
D(j)=ﬁ ;S‘:-‘l en+.1'Xu

*) We shall here call the process {s»} a purely white noise when e¢,’s are mutually
independent and indentically distributed.

**) This definition of sample autocovariance function is somewhat different from the
ordinary definition. But the difference will be small when j/N<«1.
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we get the important representation
C()=a,D(j)+a;D(F—1)+ -+ + a, D[G—Fk) . 2

From this representation of C(j) we can see at once that the sample
autocovariance function C(j) may be considered to be the response of
the filter, which has generated {X,} from the purely white noise {c.},
to the input process {D(j)}. Now, let us consider the statistical property
of the input {D(j)}. Taking into account the pure whiteness of the
process {¢,} we can get

ED(5)=0 for 7>0

and
ED(j+h)D<j)=-1i;T}ﬂR—li,’2 for ,7+h>0 and |k|<N

=0 for j,5+h>0 and |h|=N.

Thus we can see that the process {C(j); =k} is obtained by a linear
transformation from a weakly stationary process {D(j); 7=0} and that
for large N the covariance function of the process {D(j); j=0} is, except
for a constant factor N-!, very nearly equal to that of the process {X,}.

The following is the well known equation concerning the linear time
invariant transformation of the stationary process;

Dou ) =|G(f) 'Pu(F)

where Pou(f) is the spectral density function of the output, pw(f) is
that of the input and G(f) is the frequency response function of the
gystem. Taking into account of this relation we can at once see that
the sequence of the sample autocovariances C(j) (=k) may be considered
to be a realization of a stationary process with a spectral density approxi-
mately equal, except for the constant factor N, to the square of that
of the original process {X,}.

To extend the present result to more general cases, recall that if
a stationary process X, has an absolutely continuous spectral distribution
then it can always be represented [5. Chap. X §8] as an infinite moving

summation of white noise with coefficients satisfying _f_‘. la,’< 4+
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If in the above representation of X, we can assume the boundedness of
the fourth order moments of ¢,s’ and further a condition which assures
the validity of the relation

E(e,8.,6.,6,)=0 when v ¥, (i=2,3,4) 3)

then the process X, can be approximated arbitrarily closely and uniformly
in n (in the sense of fourth order moment) by a process of finite moving
summation for which the present result applies and then the process
C(@7) of X, can be approximated arbitrarily closely (in the sense of mean
square) by the corresponding sample autocovariance funection of this
process of finite moving summation, and in this sense we can extend
our result to this more general case. Thus we can see that if the
process X, is Gaussian and with an absolutely continuous spectral
distribution, i.e., if the spectrum of X, can be represented by using a
density function, then our present result applies. Further, if we can
assume the finiteness of the fourth order moment of ¢, in the definition
of the generalized autoregressive process X, which is defined by

AOXn+A1Xn—-1+ e +AhX - Osn+Blen—1+ e +Bk€n—k

where A’s are satisfying the necessary stability condition and {¢,} is a
purely white noise, then our result applies to this case, too.

3. A warning to the misinterpretation of the sample autocovariance

function

The analysis of section 2 shows that when the process X, has a
unimodal spectral density funection its sample autocovariance function
shows ‘‘undamped oscillation’’ with the same central frequency as that
of X, and with the band width narrower than that of X,. For the
Gaussian process with a unimodal spectral density, when the band width
of the spectrum is relatively narrow, the realization of the process shows
an oscillation which resembles an amplitude-modulated sine wave of which
frequency is equal to the midband or central frequency of the process
[10, p. 75, 4. p. 87]. Thus we can guess for the present case that the
sample autocovariance function will often show a shape which makes

*) We shall call the weakly stationary process {e,} a white noise when the process has
a flat spectral density, i.e., ¢;’s are mutually orthogonal,
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Fig. 1
“Beat phenomenon’’ of a sample autocovariance function.
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Fig. 2
Sample autocovariance function of oscillation of a ship model.

one to suppose the existence of a beat phenomenon in the original X,.

Our numerical example in fig. 1 illustrates a typical one of this
phenomenon.” In most of all our numerical computations of sample
autocovariance functions hitherto performed we encountered with this
apparent ‘‘beat phenomena’. The present example was computed from
an artificially constructed time series which simulates the sampling con-

*) The sample autocovariance function for fig. 1 was computed following the definition
of section 2, but others in this section were computed following the definition

C(j):lNz_:an-an (4=0,1,2,---).
Nn=1
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dition of the experiment reported in a book of statistical analysis of
brain waves [6, chap. 4 and chap. 10]. In this book a correlogram which
is very much like that in fig. 1 of the present paper is classified as a
type showing a beat in the brain wave while the present artificial series
X, was constructed by using the relation

X,—0.8665X,_,+40.7491X, _,=¢,

where {¢,} is a purely white noise of which ¢,s follow one and the same
Gaussian distribution with zero-mean and unit variance. Thus our present
numerical example strongly suggests the inappropriateness of the clas-
gification, and it would be more pertinent to regard that sample cor-
relogram as showing the existence of rather lightly damped oscillating
mechanism with one degree of freedom. Even if there existed really
a beating mechanism we should have to analyse much longer record of
the brain wave to attain the desired resolvability against the two domi-
nant frequencies situated very near to each other. In fig. 1 are also
illustrated a part of original X, and its corresponding part of Y, which
was generated by the relation Y,—0.8655Y,_,+0.7491Y, ,=X,. The
‘‘undamped oscillation’’ of the sample autocovariance function has a strong
resemblance to the oscillation of Y,, as was expected by our argument
in section 2.

In the case where the band width of the spectrum of X, is much
narrower than the present example, the undamped oscillation of the
sample autocovariance function will have a sharp line-like spectrum,
and the sample autocovariance function continues a movement which is
very much like a sine wave with nearly a constant amplitude. Such an
example is illustrated in fig. 2. Thus in the practical applications of
correlogram analysis, it will be better first to split the record into two
parts of equal length and to compute the C(k)’s for each two parts and
then to make differences between the corresponding C(k)’s. The values
of these differences contain only the noise or the effect of sampling
fluctuations, and the signal or the true value {R(k)} is completely sup-
pressed. In most practical cases, the variances of these differences will
be approximately the twice of those of C(k)’s, and the differences will
give insight into the magnitude of sampling fluctuation of C(k).

By way of discussing the sampling fluctuation of sample autocovariance
function, we shall make a slight degression to see that for the estimation
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of the spectral density it is the signal-to-noise ratio of the sample
autocovariance function that matters. The sample covariance C(k) smo-
othed by the real smoothing kernel {d,; v=0, +1, +2, ---} is defined by

Ck)=d,C(k) k=0, +1, +£2, ++

where it is assumed that d_,=d,.
Now we want to select a smoothing kernel which will make {C‘(k)}
a good estimate of {R(k)}. For this purpose we seek the d,’s which

~ minimize the expected total mean square error

2 E|C(k)—R(k)| .

It is assumed in this section that some necessary conditions are satisfied
to assure the convergence of infinite sums and integrals. Under the
condition 3 E| C(k)— R(k)|?< o we have S E| C(k)— R(k) P=E(5 | C(k)—

R()[") and we have
S EICWO-ROI=E|" [B()—p(A)I af
where B(f)= 3. e~#"*C(k).
Therefore we get
E\|B(H—p()I* ot

= 2 [DYCH) + R¥(k)] [dk_ pz(c(g)( I:L)R’(k)]z

DCU)R'(k) )
T 3 D)+ B® @

and we can see that the d, which minimizes the total mean square is

given by
tu=[1+(Pga) T

This is a result already given by Lomnicki and Zaremba [9], and it shows
clearly that for the estimation of the spectral density function it is the
signal-to-noise ratio or, assuming the unbiasedness of C(k), the coefficient
of variation of the sample autocovariance that matters, and for the
estimation of the spectral density the use of the sample autocovariances
corresponding to the true covariances which are nearly equal to zero




UNDAMPED OSCILLATION OF THE SAMPLE AUTOCOVARIANCE FUNCTION 135

merely increases the sampling variability of the estimate. The result
(4) is an expression of the uncertainty in the estimation of the power
spectral density, and shows that if we adopt d, such as

d,=1 for |k|=pN (0<1)
=0 otherwise

and take into account of the fact that for large % it holds that
Dz(C(k)),——'%a’ (d*: constant),

then for increasing N the expected total mean square remains nearly
constant. This means that the ‘‘undamped oscillation’’ of the sample
autocovariance function causes the inconsistency of the periodgram.

Observations made in this and former sections will be of some use
to those who will try to estimate the spectral density of some stationary
process through the correlogram or the sample autocovariance function.
The results show that to protect the unsophisticated analyst from the
misinterpretation of the sample autocovariance function it will be most
strongly recommended to tell him not to compute sample auto-covariances
with lags more than a given number which we tentatively suppose, as
was often recommended by Tukey, to be the 109 of the total number of
observations used for the computation. Without remembering the results
of the present observations, computing the sample autocovariances with
lags up to 309 of the total number of observations, which was suggested
by Jenkins [7, p. 159], will often be a cause of the trouble in the
course of interpretation of the numerical result.

We shall here summarize the content of this and former sections:

If a fairly stable estimate of the power spectral density of a stationary
time series is desired, we should use the record of which length is at
least ten times longer than that of the lag after which the true auto-
covariances will become negligibly small.

In the next section more informations will be obtained to make the
above statement practically useful.

4, Effect of prewhitening
In this section, by using the results obtained in section 2, we shall
discuss the effect of prewhitening operation on the undamped oscillation
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of the sample autocovariance function. *
Assuming the conditions in section 2, we have

EIClor~N-|" p()df
E|cO|=DX)={" p(H)if

where k is assumed to be in the range of lags where the true auto-
covariances are negligibly small compared with the standard deviations
of C(k)’s and the signasis used to indicate that the difference of the
both side members tends to be negligibly small compared with their own
magnitude as N increases infinitely. From these relations we have

E|CH) 1 | P
ECOF NI p(syar|
=(I" [pH=1" srarTar+[[" wnas[) oy

([ [ o)

Thus, considering the sample autocovariance function to be composed of
the signal R(k) and the noise C(k)— R(k), we can see that the ratio of
the mean power E|C(k)|* of the stationary noise to the square of the
maximum signal level EC(0) attains its smallest possible value when
2(f)=D*X) holds, i.e., when X, is a white noise. Obviously the above
stated ratio takes larger value for p(f) with larger variation, and we
can see that if, for a process X, with highly peaked power spectral
density function p(f), we can design a proper numerical filter which
will fairly whiten the X,, then we can markedly improve the signal-
to-noise ratio of the sample autocovariance function to avoid the
misinterpretation discussed in the preceding section.

We shall see the practical meaning of this signal-to-noise ratio by
some numerical examples. The first example is concerned with the already
mentioned sample autocovariance function of the artificial series simulating
a record of brain wave experiment. The numerical filter for this case
was designed by the following procedure:

*) As to the details of the prewhitening after the data have been obtained, see the paper
by Blackman and Tukey [3, §15].
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Fig. 3.
Effect of prewhitening operation applied to the {C(k)} of fiig. 1.
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Taking into account the shape of the sample autocovariance
function we have decided to solve the following simultaneous
equations for the unknowns a and 8

C(1)+aC(0)+BC(—1)=0
C2)+aC(1)+BCO) =0,
then we have calculated the prewhitened sample autocovariance

function C’(k), which is the sample autocovariance function of
the prewhitened process X,'=X,+aX,_,+B8X,_,, by the relation
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Fig. 4
Effect of prewhitening operation applied to the {C(k)} of fig. 2.
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C'(k)=BC(k+2) +a(1+B)Clk+1)+(1+a* +6)C(k)
+a(1+B8)C(k—1)+BC(k—2) .

In this example, as was already mentioned in the preceding section, we
can observe a significant ‘‘beat phenomenon’’ in the original sample
autocovariance function, whitse inl] prewhitened form illustrated in fig. 8
we can hardly recognize any trace of the regular undamped oscillation.
Fig. 4 shows the results of successive applications of the prewhitening
operation of the type stated above to the sample autocovariance function
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Fig. 5
Effect of prewhitening operation applied to the {C(k)} of oscillation of the front
axle of an automobile.
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Fig. 6
Comparison of the spectral windows with respect to the {C’(k)} of fig. 3.
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of a record of oscillation of a ship model, which was illustrated in fig. 2.%
The second example given in fig. 5 is concerned with a record of oscillation
of the front axle of an automobile running over a paved road.** These
examples show that we should always prepare against the ‘‘undamped
oscillation’” in practical applications of correlogram analysis, especially
when the length N of the record used in the calculation of C(k) is not

¥ This sample autocovariance function was made available to the present author by
courtesy of Mr. Y. Yamanouchi of the Transportation Technical Institute of the Ministry
of Transportation.

**) This record was made available to the present author by countesy of Mr. I. Kanesige
of the Isuzu Motor Company. It is one of the experimental results treated by Kanesige [7].
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Fig 7.
Comparison of the spectral windows with respect to the {C’(k)} of fig. 4.
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long enough, and that the application of some kind of prewhitening
operation to the sample autocovariance function will always be of great
help to avoid the misinterpretation of the numerical result.

In figs. 6 and 7 are illustrated the estimates of spectral density
which were obtained, after prewhitening, by using different smoothing
kernels. From these examples we can obviously see that the effect of
prewhitening is so drastic that when prewhitening is performed properly
the choice of the spectral window practically matters very little for the
estimate of the spectral density function. This point was often stressed

* As to the definition of the window, see Blackman and Tukey [3].
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by Tukey in many occasions but without numerical examples, and some
of the theoretically minded statisticians are, lacking in the experience
of numerical computation, still giving too much weight to the choice of
the spectral windows.

It seems to the present author that there remains much to be
theoretically investigated in the nature of the prewhitening operation when
it is applied after the data are obtained. Some of them are 1) how to
design the practically most efficient numerical filter and 2) to study how
is the statistical variability of the estimate obtained after prewhitening.
In this paper we shall only content ourselves with pointing out the
necessity of further theoretical study of the prewhitening operation.

Here we want to mention very briefly the importance of prewhitening
operation in the estimation procedure of the frequency response function
by using the cross-spectral density. In the statistical estimation of the
frequency response function by Fourier-method, we have always to use
some sort of smoothing operation not only to reduce the sampling
fluctuation but also to avoid the bias due to the truncation of the record,
and it becomes essential to keep the input process as white as possible
to avoid the bias in the estimation of the frequency response function [1].
In this case the input record may be considered to be a deterministic
one and, contrary to the case of estimation of the spectral density, the
prewhitening operation applied to the input record does not cause any
statistical difficulty. More precise discussion of this estimation procedure
will be presented in the forthcoming paper.
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