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1. Introduction

Consider the class of all probability distributions which are absolutely
continuous with respect to a o-finite measure m on a o-finite measure
space (R, m), and denote by f(2), g(z), --- their generalized probability
density functions. Let H be a certain given class of probability density
functions, and denote by (H, g), the problem of testing the hypotheses
H that the distribution function under consideration has a member of H
as its density function, against a simple alternative g at the significance
level a.

Further let A(H) be the class of all a priori probability distributions
over a o-fleld of the subsets of class H including all one point subsets
and H*® the class of all probability density functions of the form

BY £@=| f@ans) ,

for fin H and N in A(H).

By the Neyman-Pearson fundamental lemma, there exists a most
powerful test @, of exact size a for the testing problem (fi, g9)s for
each ) belonging to A(H). If there exists an a priori probability
distribution A, in 4A(H) such that the power of the most powerful test
®,, of the testing problem (f,;, 9). is the smallest, i.e.,

2 Elp\(DI=E[pNZ)], for all M in A(H),

then A\, is called a least favorable distribution over H, and the cor
responding probability distribution with density function f,(z) is called
a closest distribution for the testing problem (H, g).,.

For most of the problems of testing hypotheses, we can easily
“obtain some idea about the least favorable distributions. For the
problems of testing hypotheses where it is difficult to find out the least
favorable distributions, E.L. Lehmann [1] suggested the following
proce_dures: (i) Try to find a step function A such that E,[@.(Z)]=a at
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all steps, or (ii) try to find an a priori distribution )\ of the continuous
type such that E,[9,(Z)]=a whenever the density of A is positive.
However, in problems of testing hypotheses, parametric or non-
parametric, the closest distribution is often obtained as the nearest
distribution defined by S. Kullback [6, Chap. 8, Sec. 2], which attains
the minimum of a directed distance called the discrimination information
measure, between two sets of probability density functions, the hy-
pothesis and alternative. We, therefore, propose the following steps:
first as certain the existence of the nearest distribution of a distance
problem which is suitably constructed in connection with the testing
problem under investigation, and if it exists, then examine whether the
distribution is closest or not. To discuss this process is the purpose
of the present paper.

In Section 2, the concept of the nearest distribution and its ex-
istence condition will be given. The basic idea and procedure for deriv-
ing a most powerful test will be stated in Section 8, and some examples
of applications to the typical problems of testing hypotheses concerning
the normal, binomial and Poisson populations are given in Section 4.

2. Nearest distribution in a distance problem

Let Z be a random variable defined on a o-finite measure space
(R, m), whose distribution is absolutely continuous with respect to the
measure m, and let T(Z) be a vector of s real statistics, T.(Z),
T(Z), -+, T(Z). For any given vector 6 of s real numbers, 6,,6,, «--, 6,,
let K(T,60) designate the class of all generalized probability density
functions f(z)’s such that E/[T(Z)]=6. Further in the present
section, it is assumed that the carriers of the members of K(T,6)
and of g(z) to be considered below are all identical. Thus we can
assume, without any loss of generality, that they coincide with the
whole space R. A

The class of all probability density functions of the form

(2.1) f(2)=9()e"?[M(7) ,

were 7=(7,, Ty, ***, T,) is an s-dimensional real vector, 77T(2)=>:_.7; T:(2)
and M(t)=E [e"?'], provided that the latter exists, will be called the
exponential family of probability density functions generated by g and

T. It is evident that the carriers of the members of this family are
all identical with R(a.e, m), and that the identity 7 T(z)=const. (a.e. m)
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implies f.(z)=g(2) (a.e. m). This class, C(g, T), forms a homogeneous
set of probability measures, that is, the members of C(g, T') are abso-
lﬁtely continuous with respect to each other, and it is seen that the
statistic T(Z) is a sufficient statistic for this class. ‘

For any pair (f(2), 9(2)) of two probability density functions with
the same carrier, the Kullback-Leibler mean information for discrimina-
tion defined by

2.2) 1f:9)=| @ log L& am(z)
B g()

satisfies the inequality I(f:g)=0 with equality when and only when
f()=g(2) (a.e. m), and it may be regarded as a directed distance
between f and g. Let H be a certain class of probability density
functions whose carriers are all identical with R. A natural definition
of the directed distance between H and a probability density function
9(z) may be given by I(H:g)=inf{I(f:g);fc H}. If there exists a
member f,(z) of the class H such that I(f,: g9)=I(H:g), then I(f,:g) is
called a minimum discrimination information, and we shall say that
fo(2) is a nearest distribution for the distance problem (H: g).

As for the existence of the nearest distribution and its uniqueness
for the distance problem (K(T, 6): g), the following theorem is a multi-
statistics extension of the result by S. Kullback [6, Chap. 3, Theorem
2.1]. . . \ . .

THEOREM 2.1. Let D be the set of 7’s corresponding to C(g, T),
1.e., D={z; f.(2) e C(g, T)}, and suppose that (i) D is an open. domain
(including the origin) in the s-dimensional euclidean space, (ii) 7T(2)
=0 (a.e. m) if and only if =0 for 7’s belonging to D, and (iii) M(z)
18 differentiable partially up to the second order with respect to the
components of T under the sign of the integration.

Then, a necessary and sufficient condition in order that the nearest
distribution exists for the distance problem (K(T,6):g), is that the
system of equations ' '

2.3) ??_—-log M@)=6,, (i=1,2,:--,3),

18 solvable in .

If the mearest distribution ewists, then it is wunique amd is a
member of the family C(g, T) with the form
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(2.4) fi2)=0(2)e”"" | M(z") ,
where T°=(7%, 7%, «++, %) is the solution of the equation (2.3). The mini-
mum discrimination information is given by

(2.5) I(fy: g)=7"0—log M(7’) ,

where, of course, t°0=>3:_,7%0..
PROOF. Let 7=(7,, 7, +++, 7;) and ) (scalar) be the Lagrange multi-
pliers, and consider the expression

(2.6) 1(£: )= EAe T E1]= | L(F (@), 7, Ndm.,
where the integrand of the right-hand side is of the form

(2.7 L(f(2), T, M)=f(2)(log %—T T(z)—>) .

In order to minimize the mean information I(f:g) subject to the
condition that f belongs to the class K(T, §), the expression (2.6) must
be minimized under the condition that the function f(z) is positive
(a.e. m) on R. Here, we can assume, without any loss of generality,
that the density function g¢(z) is positive everywhere on R. In the
general case where the o-finite measure space (R,m) is arbitrary,
however, it is not clear whether the usual method of minimizing the
expression (2.6), regarding it as a functional of f, by calculating the
variations is applicable.

Fortunately, it is possible, in our present case, to minimize the
integrand (2.7) for each point z of R, as will be seen in the following.
Since the real-valued function h(x)=z(log z/u—v) defined for 0<x <<,
where u(>0) and v are any given constants, is minimized when and only
when x=ue’", the integrand (2.7) is minimized, for each point z of R,
when and only when f(z) is a function with the form

(2.8) FE=g@)e™

Clearly, this function is positive everywhere on R, integrable with
respect to the measure m on R when 7 belongs to the domain D, and
from the condition (iii) of the theorem, E/[T(Z)] exists for every
i(=1, 2, -+ -, 8) provided that = belongs to D. Since m is a non-negative
measure on R, it is obvious that the function f(2) given by (2.8) mini-
mizes the expression (2.6) for any r and \ subject to the restriction
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mentioned above.
The condition that the function f(z) given by (2.8) is a member of
the class K(T, 6) implies that the function f(z) is of the form

(2.9 fl2)=g(2)e"" | M(z) ,

where, 7°=(z}, 73, +-+,70) is a real vector satisfying the system of
equations (2.3). This proves the necessity of the solvability of the
equation (2.3) for the existence of a nearest distribution for our distance
problem (K(T, 6): g).

Conversely, if the equation (2.3) has a solution 7z° which belongs to
the domain D, then the generalized probability density function fy(2)
given by (2.9) is a member of the class K(T, 6). Then, as was seen
above, f,(z) minimizes the mean information I(f:g), and hence, it is
the nearest distribution. This proves the sufficiency.

Suppose that a nearest distribution exists for the distance problem
(K(T, 8): g). Then, it is clear, from (2.9), that the nearest distribution
belongs to the exponential family C(g, T), and the minimum discrimina-
tion information is given by (2.5).

In order to show the uniqueness of the nearest distribution when it
exists, it is sufficient to show the uniqueness of the solution of the
system of equations (2.3) provided that it is solvable. For this, consider
the quadratic form

3 62
2.1 = ,
(2.10) U= 3 (57 50 108 M@,
where z;, 2, +++, #, are the real variables. Defining M(7)=(9/d7;)M(7)
and M, ,(t)=(¢*dtr.67;)M(t), for the notational simplicity, one can easily
find that

U@=— 5 (MM~ MM o
(2.11) '

=B @T e E 7]~ BiaTe™)),

where ¢ T=3:.,2;T;. Hence, by the Schwarz inequality, it follows that
the quadratic form U(x) is strictly positive for non-zero x=(x;, ®;, **°,
x,) unless zT(z)=const. (a.e. m) on R, which means that the solution

of the equation (2.8) is unique. The proof of the theorem is now
complete.
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In connection ,with this theorem, for the case when s=1, the
properties of M(7) and the solution of the equation (2.3) were discussed
by S. Kullback in his book [6, Chap. 3, Sec. 4], some of which are
listed without proof in the following lemma for the later use.

LEMMA 2.1. Under the conditions of Theorem 2.1 for the case
when s=1, let 7(6) be the solution of the equation (d/dz)log M(r)=6.
Then

(i) (d|d7)log M(7) is a monotone increasing function of t,

(ii) 7(8) is a monotone increasing function of 6, and

(iii) 7(0)<0,=0 and >0 corresponding to the cases when E [T (Z)]
>0,=6 and <0, respectively.

Now, under the situation of Theorem 2.1, suppose that the distance
problem (K (T, 6): g) is solvable on a certain open and convex domain
U of 6 in the s-dimensional euclidean space. Let K(T, 6°) be the set-
theoretical sum of K (T, 6) for all  such that 6,<6¢, ¢=1,2, ---,s, and
0 e U, where €°, a vector whose components are 62,6, ---, 65, is fixed
in the domain U. Then, as for the distance problem (K(T, 8°: g), the
following result can be obtained.

LEMMA 2.2. If the statistics T(Z), T(Z), «+-, TZ), which are
the components of the vector of statistics T(Z), are mutually inde-
pendent under the distribution of Z whose probability density function
18 g(2), and moreover, if E[T(Z)]>6, i=1,2, -+, s, then the nearest
distribution for the distance problem (K(T, 6°): g) belongs to the class
K(T, 6.

PrOOF. From Theorem 2.1, the minimum discrimination information
for the distance problem (K(T), 0): g) is given by

(2.12) I(f: 0 9)=7(0)0— log M(z(0)) ,

where 7(0)=(7,(6), 7,(6), + -+, T,(f)) is the solution of the system of
equations (2.3). Since the independence of the statistics T(Z)’s under
¢ implies that

(2.13) M(‘L')=iH;Mi(z',-)

with definitions Mi(z,)=E,[e*s#],i=1,2, ---, 8, the equation (2.3) and
the minimum discrimination information (2.12) are reduced, respectively,
to
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d

(2.14) E“'log M()=6,, 1=1,2,...,8,
and
(2.15) I(fowr: 0)= 2096, log Miz:(0))) ,

where 7(8)=(7.(8,), 7:(6,), -+, 7,(8,)) is the solution of the equation
(2.14).

Let ¢’ and 6" be any two points fixed in the domain U such that
0:<0/,i=1,2, ---, 8, (not all equal), and put 9(p)=(1—p)¢’ +pb”, where
p is a real number such that 0<p=<1. From the convexity of the
domain U, it is obvious that 6(p) is again a point of U for any p
(0=<p=<1), and hence the distance problem (K(T, 8(p)): g) is solvable for
0<p=<1. Then, from (2.15) we have, after some calculations,

(2.16) ST Feomn 0= SO0 —0) .

Since 7,(0.(p))’s are the solutions of the equations of (2.14) respectively,
taking 6.(p)’s instead of 8,’s on the righthand sides of the equations in
)2.14), it follows, from (iii) of Lemma 2.1, that 7,(6,(p))<0, and hence
we have (d/dp) I(f.0wp): 9)<0. This means that the minimum discrimi-
nation information I(f.e:g), which is a function of 6, is minimized
when 6=6° under the restriction that 6,<6? i=1, 2, +--, 8. Thus the
proof of our lemma is complete.

It is not clear whether the result of the above lemma remains true
or not, when the assumption of the independence for the statistics is
removed.

The condition (iii) concerning the regularity of M(zr) in Theorem
2.1 requires the existence of E,[T;T;e’] for all ¢,5=1,2, .--,8, and
for all 7 in D. A sufficient condition in order that the regularity
assumption (iii) in the theorem is fulfilled together with other two
assumptions, (i) and (ii), will be given in the following lemma. The
proof is easy and is omitted.

LemMMA 2.3. If the statistics Ty(Z), T(Z), +++, T(Z), the com-
ponents of the vector of statistics T(Z), are all bounded with prob-
ability ome wunder the distribution of Z whose probability density
Junction is g(z), then M(t) satisfies the required assumptions (i) to
(iii) in Theorem 2.1, where the domain D may be taken to be the s-
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dimensional euclidean whole space.

In the applications of these results to the statistical inference, it
will be convenient to specialize the structure of the space R. Suppose
that the measure space (R, m) is the m-product of a o-finite measure
space (R, m,), that is, R is the cartesian n-product of a certain
(abstract) component space R, on which a o-field is defined as usual
from those of component spaces, and m is a o-finite measure on R,
defined over the above o-field such that m(A4,x A;x «++ X A,)=m(4,) X
mo(A,) X + + - xmy(A,) whenever A.’s are the measurable subsets of R,.
Under this situation, the class of all generalized probability density
functions of the distributions of the random vector Z=(X,, X, -+, X,)
defined on the measure space (R, m) is denoted by @, whereas Q, and
Q, designate the classes of all generalized probability density functions
of the forms f(z)=IIr.fi(z:;) and f(z)=IIr.f(x;) respectively, where
f(x)’s are the generalized probability density functions of the component
variables X’s of the random vector Z, which are defined on the com-
ponent spaces. Clearly, Q,CQ,CQ,.

The following corollaries are the direct consequences of Theorem
2.1, and the proofs are omitted.

COROLLARY 2.1. Let T(Z)=(T(X)), T«(X)), -+, T.(X,), and let
9(@)=I1%. g:(x;) be a member of the class Q, defined above. Assume
that M(z,)=E,[e""**V] is differentiable twice in t; under the sign of
integration, for each i, and moreover, the equation in t;, (d/dz;) log
M(z;)=0;, has a solution 7%, for each 1.

Then, the mearest distribution exists for the distance problem
(K(T, 0):9) as a member of the intersection K(T,0)NQ, with the
Sform

(2.17) Ji(2) =E[gs(xe)exp(72Ts(wa))/Mi(T?)] .
The minimum discrimination information is given by
(2.18) I(f,: 9)= 3[7i6,~log Mi(<)] .

COROLLARY 2.2. Let T(Z)=(TyX), T(X)), +++, TX,)), and let
9(2)=11%.94x;) be a member of the class Q,. Assume that M(r)=E,,
[e" '] is differentiable twice in T (scalar) under the sign of integration,
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and that the equation in T, (d/d7)log M(7)=0, has the solution t,
(scalar).

Then, for the distance problem (K(T, 0):g) with 6=(6,, 6, «++, 6,)
there exists the mearest distribution belonging to the class Q, with the
form

(2.19) £ =loze = Mz,

and the minimum discrimination information is given by
(2.20) I(fy: 9)=n[7.0,—log M(7,)] .

In general, in order to apply the concept of the information measure
for discrimination introduced above, to the theory of testing hypotheses,
two different ways may be considered.

The one is, in short, the ‘‘nearest distribution consideration’’, that
is to say, the nearest distribution of a distance problem (H: g) appears
frequently to be least favorable for the corresponding problem of the
testing hypotheses, (H, g),, and hence, if one wants to find a least
favorable distribution for the testing problem (H, g),, it would be useful
to inquire, in the first step, whether the corresponding distance problem
(H: g) is solvable or not, examining some exponential families C(g, T)’s
with different statistics 7's.

The other way is the ‘‘information statistic consideration’’, which
has been summarized in the book of S. Kullback [6]. An estimate of
the minimum discrimination information from a random sample, which
is called a minimum discrimination information statistic, may be con-
sidered as a measure of directed distance, which is obtainable by a
statistician, and he can construct a test procedure basing upon that
estimate.

The purpose of the present paper is to work out the former idea
in order to derive an optimum (most powerful) test, and the procedure
will be described in the following section.

3. Nearest distribution and the derivation of most powerful test

In order to make the situations clear, under which our discussions
will be set forth, we shall give, in the first place, the set-theoretical
interpretations of the basic result by E. L. Lehmann and C. Stein [4]
together with our present method.
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Denote by .7 .(H) the class of all test functions for the testing
problem (H, g)., i.e.,

(8.1) T JH)={;0=y(z)<1(a.e.m), E;Y(Z)]=a for all f in H} .

If the assumption concerning the joint measurability of f(z)’s for the
class H is satisfied, then Fubini’s theorem provides us with the identity
T H)=T (H"™), and the set £ (H) of all the most powerful
tests for the testing problem (H, g), is identical with the set _#Z (H*?)
for the testing problem (H"?,g),. Therefore, we shall consider
the testing problem (H*®,g), instead of the original problem (, g).
itself.

For each f, in H*®, there exists a most powerful test @, of the
testing problem (f, 9)sy and we designate the set of all these @,’s
corresponding to the class H*® by & H*®). Let, further, H° be the
class of all closest distributions for the testing problem (H*®,g),, and
denote by # .(H®) the class of most powerful tests ®,’s of the testing
problems (fi, 9)s’s for all f, belonging to H°.

The result by Lehmann-Stein [4] states the inclusion relation

(3.2 F SHO)N T S(HM)C F H)N A H) .

Therefore, in order to derive the most powerful test, it will be sufficient
to find a member f, of HA® such that the most powerful test for the
testing problem (f,, 9). satisfies the size condition for the original
problem (H, g), or equivalently for (H*®,g),. In other words, the
first class of the left-hand member of (8.2) would be a class of refer-
ence, in which a most powerful test of (H, g), will be found.

On the contrary, in our present method as will be seen below, a
class 7 (H*® N C(g, T)NK(T, 6°)) consisting of at most one member,
considering a suitable statistic T, will be examined whether its element
is eligible for a member of .7 ,(H).

Now, our procedure proceeds as follows: Let T(Z)=(T(Z), T«(Z),
«++, T(Z)) be a vector of s real statistics, and let {L(T)} be a partition
of the class H such that the statistic 7'(Z) is distributed identically
under all members of each subclass L(T). Then, it is clear that the dis-
tributions of 7'(Z) under the members of the class L(T)"*™" are identical
with each other, and the family of all these classes, {L(T)"*""}, con-
stitutes a disjoint family of subclasses of the class H*™. Furthermore,
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let E;qn[T(Z)]=0;.

Hereafter throughout the present paper, we shall assume that the
regularity for M(r) described in Theorem 2.1 is always satisfied. The
nearest distribution for the distance problem (K (T, 4,): g) will be given,
if it exists at all, by

3.3 f:(2)=9(2) exp(z.T(2))/ M(zs) ,

where 7, is a real vector, as was seen in Theorem 2.1. Let
(3.4) WL, T)={z; 7, T(2)<ci},

(3.5) V(L, T)={z; . T(z)=ci} ,

where the constant ¢; is so chosen that, with some a,(0<a;<1)
(3.6) P(W(L, T))+a,P(V(L, T))=a .

Then, the most powerful test of the testing problem (f.;, 9), is given
by

1, if ze W(L, T),
(3.7 o (2)=1a, if ze V(L, T),

0, otherwise.

For some statistic T(Z), if there exists a subclass Ly(7T)*»™ which
contains the nearest distribution fr,(2) for the distance problem (H*™®:
g), and if the test o,(z) satisfies the size condition for the testing
problem (H, g),, then, the test @, is the most powerful test for (4, g)s
and consequently, f. Lo(z) becomes to be closest.

These considerations lead us to the following

THEOREM 3.1. If there exist a statistic T(Z)=(T(Z), TAZ), ---,
T(Z)) and a subclass L(T) satisfying the following three conditions;

(i) Ea[Te(Z)]>§ggEf[Ta(Z)]. 1=1,2,-.-,8,

(ii) C(g, T)NL(T)*='™ 0,

(iii) Pr(W(Lo, T)+05Po(V(Lo, T)ZPW(Ly, T))+a;,PAV(Li, T)) for
all L(T),

then, the most powerful test for the testing problem (H, g), 8 given
by
1, if 7, T(2)<cy

(3.8) Pr(2) =10y, f T,T(@)=cy ,
0. otherwise .
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The nearest distribution for the distance problem (H*®:g) lies in the
class L(T)"™™, and it is the closest distribution for the testing
problem (H, g),.

Moreover, if the distribution of Z has density function g(z) and
if the statistics T(Z), TAZ), +++, T(Z), are mutually independent, then
the subclass L(T) will be determined as a class satisfying the con-
ditions
(8.9) ELO[T,-(Z)]:m?x E|T(Z)], 1=1,2,+--,s8.

ProoF. Put E,[T(Z)]=6. Then L(T)»"cK(T,¢). From
Theorem 2.1 and the condition (ii) of the present theorem, there exists
only one member f,(2), the nearest distribution for the distance problem
(K(T, 6°): g), which belongs to the subclass L,(T)"% with the form

(3.10) fl2)=9()e"™ | M () ,

where 7° is the unique solution of the equation (2.8) for the distance
problem (K(T, 6°): g). '

The most powerful test of the testing problem (f, 9), is given by
(3.8), and by the condition (iii) of the present theorem, this test
satisfies the size condition for the testing problem (H, g),. Consequently,
the test given by (8.8) becomes most powerful, for the testing
problem (H, g),, which completes the proof of the first statement of the
theorem.

The second statement is obvious from Lemma 2.2, and the proof
of our theorem is complete.

For practical applications, it will be convenient to specialize the
above theorem to the case when s=1. Let

3.11) t (@)= max {tz; gwdpg(t»a} ,

where T(Z) is a single real statistic and PZ(t) denotes the distribution
function of the statistic 7(Z) induced by a subclass L(7T). If Pi(t) is
continuous, then (&) becomes the 100a percent-point on the right tail.
Now, the above theorem can be restated in the following
THEOREM 3.2. If there exist a statistic T(Z) and a subclass Ly(T)
satisfying the following three conditions;

(i) E[T(Z)]>sup E,[T(2)],
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(ii) C(g, T)NL(T)*="™ 0,
(iii) ti(@)=ta), and P {T(Z)=t, ()} 2 PA{T(Z)=t,(@)} for all I(T),

then, the most powerful test for the testing problem (H, g), is given by

17 if T(z)>tlo(a) )
'(8.12) Pu(2)=1a,, of T(2)=t,(a),
0, otherwise.

The nearest distribution for the distance problem (H*™:g) coincides
with the closest distribution for the testing problem (H, g),, and lies
in the subclass L(T)* %™ which satisfies the condition

(3.13) E,[T(Z)|=max B[T(Z)] .

ProoF. From Lemma 2.1, (iii), the test defined by (3.8) in the
preceding theorem (s=1) is now reduced to that in (3.12). (3.13) follows
from Lemma 2.2. The proof of the theorem is thus complete.

In the case when s=1, as was seen in the above theorem, the most
powerful test of the testing problem (H, g), depends only on the sign
of the solution of the equation (2.3) for the distance problem (H*®:g)
(for s=1), and hence the following corollary is an immediate consequence.

COROLLARY 3.1. Let A be a class of the generalized probability
density functions containing the demsity fumction g(z). If it holds
that

(3.14) inf E, [T(Z)]>sup E|[T(Z)],
91€4 fER
and
(38.15) C(g,, TYNL(T)** ™0, for all g,c4,

for the statistic T(Z) in Theorem 8.2, then the test given by (3.12) is
uniformly most powerful for the testing problem (H, A),.

The proof of this corollary is omitted.

In order that the test (3.8) in Theorem 8.1 is realizable, it will, in
general, be necessary to know the induced distributions of the statistic
T(Z) under this problem, while in the case when s=1, the test (3.12)
will be realizable if it is known that the statistic 7(Z) is a monotone
function of a certain statistic whose distributions are completely specified
under the problem.

Here, we shall remark that we can restrict ourselves to the sta-
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tistics which satisfy the first condition of Theorem 8.1 (or, of Theorem
3.2), in order to derive the most powerful test for the problem of
testing hypotheses (H, g),. For this, suppose that there exists a
statistic 7”(Z) which satisfies the condition

@ E[TUZ)\<inf EATYZ)], i=1,2, -3,

together with other conditions (ii) and (iii) in Theorem 38.1. Let T'(Z)
=—T"(Z). Then it will easily be seen that

(LT} ={L(T)*“™} and M'(x)=E,fe™™"*]=M(~7) .

The most powerful test based on the statistic 7'(Z) may be written,
corresponding to (8.8), as

1, if 73, T'(2)<cy, ,
(3.16) Pr(R)=1az, if 77, T'(2)=c;, ,
0, otherwise.

But, since L(T")=L(T), t;,= —7;, and c; =c,,, the statistic T'(Z) satisfies
the conditions (i) to (iii) of Theorem 3.1 and the test given by (3.16)
becomes the same with that given by (8.8), which justifies our assertion.

Possibilities of the applications of our method developed in the
present section would not cover the whole class of problems of testing
hypotheses, which posess the most powerful tests derived by means of
the least favorable distributions, but most of the problems hitherto
considered in literatures, seem to have the simple structures from the
viewpoint of the present considerations.

4. Normal, binomial and Poisson populations

In the present section, we shall consider several problems of testing
hypotheses concerning some populations having the distributions of ex-
ponential type, i.e., the distributions admitting the sufficient statistics.
These families of distributions seem to be susceptible to contain the
members of the class C(g, T) when the alternative g is also of expo-
nential type.

ExAMPLE 4.1. Let X, X,, -+, X, be independently and identically
distributed according to a normal distribution N(&, ¢*) with unknown
mean and variance. Let us consider the problem (H,g), of testing
hypotheses, where
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H: ¢*=a0;
(4.1) { 7=
g: o*=ai, E=§, (0i<a).
Instead of the most powerful similar test based on the sample
variance given by J. Neyman and E.S. Pearson [7], E. L. Lehmann [1]

introduced the most powerful test based on the statistic
(4.2) T(2)=—3(Xi—£)" .

From the viewpoint of the present consideration, it will easily be seen
that the statistic (4.2) satisfies all the conditions (i) to (iii) of Theorem
3.2 when we take N(&, a}) as Ly(T).

EXAMPLE 4.2. Under the same situation as the above example, let
us examine the problem (H, g), where

H: o'<o)}

g: o*=al, E=§, (d1>0).

We take the unbiased estimate of the variance as the statistic 7'(Z),
ie.,

(4.3)

(4.4) T(Z)=-ni—1— g(xi-—X)z .

Then it is evident that 7T(Z) satisfies the conditions (i) and (iii) in
Theorem 3.2, when we put L(T)={N(§, 0}): — o0 <E< }.
Condition (ii) in the theorem will be examined as follows; since

: : _(1_ 201 -2t

(4.5) M(r)_(l 2 r) ,
solving the equation
(4.6) 8 Jog M(r)=0?,

dr
we obtain

_a-1/1 1
@.7) r=t2 (s ag),
and
4.8) M@E)=(-2-)"

g

1

The condition (ii) in Theorem 8.2 is now reduced to the solvability
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of the integral equation in M\(§)

@9 (ges) | exn[ @ty T era

1

7

(o) e[ e-er

or equivalently

sy g ex0 |~ e = T exn| - @],

subject to the restriction that A(§) is a probability density function on
the real line. Passing to the moment generating functions of both
sides of the above equation, we have

z g4 42 _ T
4.10) [ exp[et+Zireas=exp et +-Z],
or equivalently
I — 1 2 52\42
(4.11) S_wef ME)dE=exp [‘g‘lt + %(0‘ ot ] ,

for all real ¢.
The solution of the equation (4.11) will be given by

(4.12) WO =g exp |~y

where oi=(c}—a?2)/n, and this is the least favorable distribution. The
closest distribution is obtained as the nearest distribution which is the
right-hand member of the equation (4.9). We obtain from (4.7) and
4.8)

"1
@13 f)=(=)

0,077

exp |~y 5 Sw—ay .

The most powerful test for (H, g), will be given by the following
1, if S(e—F)rzoi.(),

i=1
0, otherwise,

(4.14) ¢o(z)={

where ¥2_,(a) is the (upper) 100 percent-point of the chi-square distribu-
tion of n—1 degrees of freedom. This test will be uniformly most
powerful for the testing problem (H, A),, if A is any subclass of the
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class of normal distributions {N(§, ¢%); a*>0i}.

As for the alternative method of derivation of this test, see, for
example, E.L. Lehmann [1, Chap. II, Sec. 2], or D. A.S. Fraser [8,
Chap. 2, Sec. 8]. Their method requires some intuitive reasoning in
order to find a least favorable distribution, but in our present method,
as was seen above, it is found out by a formal calculation, if we
examine a ‘‘existence condition’’ of the nearest distribution for the
corresponding distance problem, i.e., the second condition of Theorem
3.2. Such an improvement of our present method will be recognized in
the subsequent examples, too.

ExAMPLE 4.3. We shall consider a two sample problem. Let X,
X, +++,X,and Y,,Y,, ---,Y,, be the random samples from the normal
populations N(z¢,1) and N(v, 1), respectively, where X;’s and Y,’s are
mutually independent. Let us consider the testing problem (H, A),, where

{H: u=y,

(4.15) A: p<y .

For any fixed g and v, in the class A of alternatives, let
ntn’ . 1 n _ 2 n’ ._ 2
@18 g@)=(7=)"" exp| —(SE—mr+Sw—wr)].
while the class of hypotheses, H, will be represented as
_ n+n’ _ 1 n N n’ Y .
@1 H={r@=(J=)"" exp| —(E@—mr+Sw—er)]:
—w<p<ol.

In the first step, examine the testing problem (H,g),. The statistic
T(Z)=Y—X, where X and Y stand for the sample means of the
respective samples, satisfies the conditions (i) and (iii) of Theorem 3.2,
taking the normal distribution N(O 1 -17) as the distribution of the
statistic T induced from the class L,(T) in the theorem.

Since

n+n
M) =exp| —mr+ L0

(4.18) win

1,'0 = e——
2nn’

—t)
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the nearest distribution for the distance problem (H: g) becomes

»+

_ 1 »’ _ l ” _ 2 n’ _ R
@19 £@=(5=)" exp| - S@—mr+Fe—w)].
where g,=(ng,+n'v)/(n+n'), which is a member of the class H. Hence,
the condition (ii) in Theorem 3.2 is fulfilled, and the test
1, if §—7=/"T ¢ (),
(4.20) q»n(z):{ @)

0, otherwise,

where t,(a) denotes the (upper) 100a percent-point of the standard
normal distribution, will be most powerful for the testing problem
(H, 9),. This test is also uniformly most powerful for the problem
(4.15).

ExamMPLE 4.4. Let X, X, ---, X, be a sequence of mutually in-
dependent random variables, where each X; is distributed according to
a Poisson distribution with unknown mean )\, ¢=1,2, ---,n. Let, for
the sum of means, =37\,

H: 66, ,

4.21
( ) A: 0>6,,

and consider the testing problem (H, A),. Here, 6, is a given constant.
(See E.L. Lehmann [2, Chap. 3, Prob. 27].)
If we consider the statistic

(4.22) T(Z)=§jl,X,-,

then the distribution of this statistic is again the Poisson distribution
with mean 4. Let g(2) be a member of the class A of alternatives,
that is,

n g n
(4.23) 0(2) = ne’;—, , G=20a>0) .

For the testing problem (H,g),, the statistic (4.22) satisfies the
conditions (i) and (iii) in Theorem 3.2, if we take the class of all
Poisson distributions of Z such that 3. \;=6, as the class L(T) in the
theorem. .

The condition (ii) in the teorem is examined as follows: Since

(4.24) M(r)=exp [6,(e—1)] ,
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the equation in t, (d/d7)log M(t)=6, has the solution 7,=log (6,/6,),
from which we obtain M(z,)=¢% %, Hence, the nearest distribution of
the distance problem (K (T, 6,): g) becomes
(4.25) £42)=(T1 exp (—ra) 2L ) - exp (2] Mi(zo)

i=1 x,!

i
%

=]I exp (—Np)—2,
i=1 x.!

i

where \;,=60,\,/60,, =1, 2, -+, n, which is a member of the hypothesical
class H, or more precisely, of the class L,(7T). Hereby, the test

1, if T(®)>c,
(4.26) P(z)=1a, if T(2)=c,
0, otherwise,

becomes most powerful for the problem (H, g),, and it will be uniformly

most powerful for the original problem (4.21). '
ExaMPLE 4.5. (E.L. Lehmann [2, Chap. 3, Prob. 30]) Let X and

Y be two random variables, which are distributed independently according

to the binomial distributions B(n, p,) and B(n, p,) respectively.
Examine the testing problem (H, A), such that

H: p=p,,

4.27) {
( A: p,<p, and p,+p,=1.

Let, for fixed p,, and p, in the class A,
(4-28) g (z) = (Z)pfl(l —pll)”-z(z)pgl(l —pzl)"_” .

Obviously, the statistic 7'(2)=Y—X satisfies the first condition (i) in
Theorem 8.2, for the testing problem (H, g),.

The second econdition (ii) in the theorem will be confirmed as
follows; Since
(4-29) M (T)_—_(l_pn +puet)”(1_pn +pnet)n ’

solving the equation in 7, (d/d7) log M(7t)=0 we have

z,=log Pu _ log Pu ,
(4.30) ° Pa 1— Pu

M(z))=(4pup,)" ,

and the nearest distribution, for the distance problem (K (T, 0): g), now
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becomes
(4.31) Fo2)=9(2)e™" [ M (z,)
_77/ _1_1 _ln—znly __l—n—y
_<x>(2) (1 2> <y>(2> (1 2) ’
which is a member of the class H such that p,=p,=1/2.
Denote by B(p,, p.)(p,=p,) the probability of rejection of the test

1, if T()>c¢,
(4.32) P(z)=1a, if T(z)=c,
0, otherwise ,

that is, put
(4.33) B0y, p) =Py, {Y—X>c}+aP, ,{Y—X=c} .

When c is sufficiently close to 7, i.e., the level of the testing problem,
« is sufficiently small, it holds that

(4.3 B, p) =B, D=A(5. L),

as was remarked by E.L. Lehmann [2]. This means that the test
(4.32) above satisfies the size condition for the problem (H, g),, and
then, this test is most powerful for the problem (H, g),. Moreover, it

will easily be seen that this test becomes uniformly most powerful for
the original problem (4.27).
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