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Summary

Under fairly general assumptions two sufficient conditions for the
convergence of the Kullback-Leibler mean information are obtained,
which are generalizations of the conditions given in Lemma 2.1 and
Theorem 2.2 of Chapter 4 in S. Kullback [1].

1. A convergence theorem

Let (R, S, m) be a o-finite measure space, and {¢, v} a set of two
measures on the measurable space (R, S) dominated by the measure m.
Let f(x) and g(x) be the Radon-Nikodym derivatives, i.e., the density
functions (with respect to measure m) of measures ¢ and v, respectively.
D(f) and D(g) denote the carriers of f(x) and g(x).

Assume measures g and v are absolutely continuous with respect
to each other. Then, it follows that D(f)=D(g)(m), and vice versa.
Under this assumption, the ‘‘mean information for discrimination in
favor of p against v’’ is defined by

L.1) 10 g)=Lf(w) log iggi—dm(x) .

For brevity, we call the above expression the “Kullback-Lelbler mean
information’’.
If both measures ¢ and v are finite, then the inequality

HUR)
(1.2) (R)log (R)<I(f ]

will be obtained, where the equality holds when and.only when the
ratio of f(x) to g(x) is a constant for almost all (m) « in R. In particu-
lar, if both ¢ and v are the probability measures, then (1.2) becomes

1.3) 0=I(f:9),

where the equality holds if and only if f(x)=g(x)(m) on R.
The following theorem gives a sufficient condition for the convergence
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of the mean information (1.1) for finite measures.

THEOREM 1.1. Assume that

(i) f(x) and g(x) are the density functions with respect to m, of
two finite measures pt and v dominated by each other, i.e., f(x) and
g(x) are nonnegative almost everywhere (m) on R, ‘U(R)ZS fdm< o,
and v(R)=S gdm< oo, and D(f)=D(g)=E(m), *

(ii) {f:g,} (t=1,2, --+) is a sequence of pairs of the density
Sfunctions of finite measures p, and v, dominated by each other, or more
precisely, f(x) and g(x) are nonnegative almost everywhere (m) on R,
pR)=| sdm<K, and v(®)=| 9dm<K, and D(f)=D(g)=E(m)
for i=1,2, .-+, where K is a positive constant independent of 1,
and (iii) E,cE(m) (1=1,2, ---) and w(E—E;)—0 as i—o.

Under these assumptions, it holds that

(1.4) I(fi:9)—I(f:9) (i— ),

if either of the following conditions is satisfied:

_ _9l_, o

(A) {(a) hy(g, g,)—essEfup (1 g[ 0 (i—w), and

(b) dy(p, p1)=es§g sup | p—p;| —0 (1—)
and ‘

(@) hi(g, 9,)=ess sup 11—& -0 (i—x), and
(B) By g

(b)' Ry(p, p‘)=essEsup ’1—% —0 (i—x)
where

p@) =L m), and px)=LE (m) (=1,2, ++4),
g(x) g:(x)

respectively on E and E,, and ess sup 18 taken with respect to meas-
ure m.

ProoF. 1°) In the first place, we consider the case when
(1.5) [ I(f:9) <o .

From definition (1.1) we can write as

I(f:g)=g p log pdv ,
(1.6) and E

I(f;: y4)=L p, log pdy, (=12, .-.),
4 .

therefore, we have
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SR NP (RS (FAPATE L‘p log pdy — S plog ndv, |
+'L_E,p1°gf’d”l (i=1,2,---).

The second term of the right-hand side of (1.7) converges to zero as
1—oo, by virtue of assumption (iii) and the finiteness of I(f: g).
The first term of the right-hand side of (1.7) will be evaluated by the
following inequality: :

= H plogpdv—s p log pdy,
Eg Ey

(1.8) ! S p log pdv —S p, log p,dv,
By By

+H plog:odvi—j p; log pdy;| .
By By .

First, we consider the first part of the right-hand side of (1.8).
Since

(1.9) -(L‘plogpdu—ghplogpdv,

=| 1p1ogplig—gldm

i

=hd(g, goL [plogp|dv,
1

it follows from assumption (iii), (1.5) and condition (a) of (4) or (B)
that

(1.10) 'Shp log pdv—L‘p'log pdy,

—0 (i— ).

Next, we consider the second part of the right-hand side of (1.8).
From Lemma 2.1 (ii) of the author’s paper [2], and condition (A),
it will easily be seen that, for any ¢>0, there exists a positive integer
N such that N<i implies k,(g, g)<e and di(p, p)<e, and

(1.11) H plogpdv;—s P, log p,dy,
By Ey

<. 19108 p—pilog | av,
i
gg e(p+1+e)dy,
By
=e{{, padm+@+9| gdm}.
By Ey
Since g,(x)<(1+¢)g(x)(m) on E,, it holds that
S pgdm=(1 +e)§ fdm .
Ey Ey

Therefore, from assumptions (i) and (ii) it will easily be seen that
the values of the members within the bracket in the last expression
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of (1.11) are bounded. Hence, we obtain

—0 (o),

(1.12) H plog pdm—g 2, log pdy,
E‘ E‘ ‘

under condition (A). When condition (B) is satisfied instead of (A),
the above convergence (1.12) will be shown as follows: from Lemma 2.1
(i) of the author’s paper [2], we have

(1.13) H plog pd”c—g p, log pdv,
Ey By

=|
Ey

=hy(p, p‘){L |plog p| gsz+L pg.dm+ L fth} .
[ (3 4

éL | plog p—p, log p,| dv,
i

(Iplog p|+p+p)dy,

1—Ps
D

By the investigation analogous to that of the case of condition (A)
above, the values of the members in the bracket of the last expression
(1.18) are bounded for sufficiently large 4. Hence, (1.12) follows from
(1.13) and condition (B).

Thus our theorem is proved in the case when |[I(f:g)|<co.

2°) Secondly, we shall prove the theorem in the case when

(1.14) I(f:9)=o .
For this case it will be shown that
(1.15) I(fi:9)— (i— o).

For each positive integer N, we define the function such as

f@), on EN{r:px)=N},
fH(x)={Ng(z), on EN{r:p®)=<N},

0, otherwise,

flz), on E.N{r:p(x)=N},

i (x)={Ng(x), on E,N{z:p(@)>N},

0, otherwise (t=1,2, «+-).
Put p¥(x)=f"(x)/9(x) on E and pi(x)=f"(2)/gx) on E; (i=1,2,-.-).
Then, these functions will be definite except for the set of m-measure
zero on each of the sets E and E,’s, respectively.

For these functions we consider the mean information such as

(1.16) and

: I(f”:g)=5 " log p7dy ,
(1.17)  and 5

I(f7 1 9)=|) pi'log pi'dv, (i=1,2, -).
. ¢
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Since the integrands of the expressions of the right-hand sides of 1.17)
are all bounded from above and measures v and v,’s are all finite
measures, it follows from (1.2) that

(1.18) [I(f¥:9)[<c, and |I(f¥:g)|<o (=12, ...),

for any fixed N. Moreover, since p™(x) and pf(x)’s coincide with p(x)
and p,(x)’s respectively on the domains where they are less than or
equal to N (=1), and p” and p{’s are all monotone nondecreasing
functions of N, it holds that

(1.19) and [T 9 TI(f19)  (N—w),
I(f":9) 1 1(f.:9) (N—o) for any fixed i (i=1,2,--+).

First, we shall show that, for any fixed N,
(1.20) I(fF :9)—I(f": 9) (i— ).

Since condition (1.5) in the proof of case 1° is fulfilled for I(f”:g)
by virtue of (1.18), in order to show the convergence (1.20) it will be
sufficient to confirm that functions f¥, g and {f7, g7} (:=1,2, :+-)
satisfy all assumptions (i)-(iii) and condition (A) or (B) of the present
theorem. It will be evident that they satisfy all assumptions (i)-(iii).
Since the definitions of functions p” and p}’s in (1.16) do not change
the values of functions g and g,’s, and it holds that

- (1.21) dyp", p¥)<ddp, p), and
h‘(pN, pf)é”“(p’ pi) (’l::l’ 2, L N=1’ 2’ ...)’

it is seen that condition (A) or (B) is fulfilled for our present case if
(A) or (B) is satisfied for f, g and {f,, 9} (i=1,2, --:), respectively.
Hence, (1.20) holds true for any fixed N.

From (1.14) and (1.19) it follows that

(1.22) I(f¥:g9)—>o (N— o),
Therefore, for any M (>0), there exists a positive integer N’ such that
(1.23) MA1<I(f¥ :9).

It will be seen from (1.20) that, for this N’ there exists a positive
integer N” such that N” <1 implies

(1.24) A ) I ) I<T
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Hence, it follows from (1.19), (1.23) and (1.24) that
(1.25) M<I(f,:9) for i=N",

which implies (1.15).
This completes the proof of the theorem.

2. Corollaries

The result of Lemma 2.1 in Chapter 4 of S. Kullback [1] states that
a necessary and sufficient condition for the convergence of the mean
information I(f,: f) to zero for i—o, where f and f,’s are generalized
probability density functions, is given by

@.1) W, f)=ess sup ]1—-?[—»0 (i—oo),

where the set E is the carrier of f and f’s. In general, however, this
condition is not a necessary condition, as will be seen by some simple
examples. Corollary 2.1 below shows that our theorem 1.1 gives the
same condition as (2.1) which is sufficient for the convergence I(f,:f)—0
for i—oo.

Theorem 2.2 in Chapter 4 of S. Kullback [1] is concerned with the
convergence of I(f,:g) to I(f:g) for i—o, when the functions f, g
and f;’s are generalized probability density functions with the same
carrier. A necessary condition was given by the same one as (2.1) above
under the assumption that I(f: g) is finite, but Corollary 2.2 below does
not require the finiteness of I(f: g)..

The notation (f;, g; f, 9)=>(f., f; f, f), for example, in Corollary 2.1
below means that functions f;, f, f and f are taken instead of f,, g,, f
and g in Theorem 1.1.

COROLLARY 2.1. (fy, 9i; f, 9)=>(f, £ f, f).

Assume that

(i) f and {f} (¢=1,2, ---) are generalized probability density
functions with respect to m, with D(f)=D(f)=E@m) (i=1,2, ---).
Then, if the condition

@.2) W, £)=ess sup , 1 —% | 0 (i—o0)

is satisfied, then it holds that
(2.3) I(fi: £)—0 (i—).
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COROLLARY 2.2. (f,, g4 1, 9)=>(fi, 95 1> 9).
Assume that

(i) f,9 and {f} (¢=1,2, --.) are generalized probability density
functions with respect to m, with D(f)=D(9)=D(f)=E(m) (i=1,2, --+).
Under this assumption, if the condition

(2.4) W, f)=ess sup ’ 1 —%’ -0 (i— o)

is satisfied, then it holds that
(2.5) I(fi:9)—I(f:9) (1— o).

COROLLARY 2.3. (f,, 9::f, 9)=>(f, fi: [, ).
Under the assumption of Corollary 2.1, if the condition (2.2) is
satisfied, then it holds that

2.6) I(f: f)—0 (i—o0).

COROLLARY 2.4. (fy, 95 1, 9)=>(/f, 95 [, 9)-

Assume that

(i) f,9 and {g,} (1=1,2, -..) are generalized probability density
functions with respect to m, with D(f)=D(g)=D(g,)=E(m) (1=1, 2, «++).

Then, the condition

2.7 k(g, g,)=ess sup ’ 1- 9
£ g

implies that -
(2.8) I(f:9)—1(f:9) (t— ).

Finally, we consider two types of truncation of the generalized prob-
ability density function; suppose ¢ and v are two probability measures
on the measurable space (R, S) which are absolutely continuous with
respect to m, with densities f(x) and g(x) and with D(f)=D(g)=E (m).
Let {E} (i=1,2,+--) be a sequence of sets in S such that E,cE(m)
(t=1,2, ---) and W(E—E,)—0 as i—. Define

f‘(x):{f(m) on E,
0 otherwise
(2.9) and

gi(x)= {y(x) on E, .
0 otherwise (1=1,2, -++),
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and
f(t)(x)z{f(x)/ﬂ(Es) on E; .
0 otherwise
(2.10) and
g(tl(x):{g(w)/”(Ei) on E; . .
0 otherwise t=1,2,---).

For these truncated probability density functions, Theorem 1.1 shows
also that

(2.11) I(f':9)—I(f:9) (t— ),
and
(2.12) I(f®:g")—I(f:9) (t— o).
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