DIFFUSION PROCESS CORRESPONDING TO

1 0 0
I LA bi(x) —2—
2 R oxt? + 2@ oxt

By MINORU MOTOO
(Received July 20, 1960)

1. Introduction and summary:

In this paper, we shall construct the diffusion process correspond-
ing to the operator A =1/2 3, 8*/(0x")* + 3, b(x)d/(6x') in the N-dimen-
sional space, where b*(X)’s are bounded uniformly continuous functions
on the whole space, and investigate properties of the semi-group
associated with this process.

In section 3, we construct the process in the space of continuous
paths by using the stochastic integral. It is shown that the process
constructed is absolutely continuous with respect to the Brownian motion
and vice versa, so far as the paths during a finite time are concerned.
The method of construction is essentially the same as in [1] although
this paper treats the one dimentional case.

In section 4, it is shown that the semi-group associated with this
process can be restricted to certain functional spaces (for example, the
space of continuous functions vanishing at infinity) and is strongly
continuous on these spaces. These spaces are normed by the maximum
absolute value.

In section 5, assuming the Lipschitz condition for b¥(x)’s, the Hille-
Yoshida’s generator of the semi-group with its domain is investigated,
which is a closed extension of A in a certain sense. Especially Dynkin’s
generator of this process is represented in the form independent of
the process.

In section 6, some probabilistic properties of this process are stated
which are immediately deduced from the fact that this process and the
Brownian motion process are absolutely continuous with respect to each
other.

The applications (for example, to Dirichlet’s problem to the operator
A) will be treated elsewhere.
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38 MINORU MOTOO

2. Notations

In this section we summarize the notations which are used in the
present paper.
RY¥ : the N-dimensional Euclidian space.
BY : the Borel field generated by the open sets in R~.
B the set of real valued and bounded B"-measurable functions
on R.

(o the set of real valued and bounded continuous functions on R¥.

c the set of uniformly continuous functions in C.

C. : the set of functions in C, each of which has a (finite) limit at
infinity.

C, : the set of functions in C.. whose limits at infinity are zero.

W : the space of continuous functions from [0, o) into R”.

w : the element of W

x(t, w) : the value of w at t:¢e[0, ).
w; : the shifted path of w: (s, w})=uw(t+s, w)
w; : the stopped path of w: (s, w;)=x(min(s, t), w)
B. : the Borel field generated by the subsets in W such as
{w: x(t, w)e A for any te[0, «)} for AeB~.
B, : the Borel field generated by the subsets in W such as
{w:xz(s, w)e A} for s<t, AeB".
or B,={B={w:w; e B"} for all B'e¢B.}.
o (Markov time) : the positive B.-measurable function on W such as
{w:a(w)<t} eB,, wf and w; are defined as w;” and w;.
B, = n SB,H_n{B B={w: w;,.€ B’} for all B'e®B.}. (Then,
o and x(o w) are B-measurable).
{P.},xeR" : the Brownian measures on (W, B.) i.e.,
P({w: xz(t,, w)e A, 1=1,2, -+« n})
’ > Wa—Yay)’ _2yi—x)
=§A1'°'Sdnexp {— 2(8,—8n-1) T 2s, }
V(@)™ (8,—8,-1) *++ (5:— 818,

where A, €B”, ,

E{.} : the expectation with respect to P-measure. (For P,-measure or
P_-measure, we shall write their expectations E,{-} or E,{-}
etc.) E{-|B} or P{-|B} are used for the conditional expecta-
tion or the conditional probability with respect to Borel field B,

dy, -+ dy,
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%(4) : the characteristic function of the set A.

3. Construction of the process.
Let b(x)=(b'(x), - -+, b¥(x)) be a vector valued function on R¥ such
that b'(x)eC. Set

Tt w) =T, w, B)=| 2 0a(®) dz) 3.1
K(t, w)=K(t, w, b)=%§: (3 b= (b)) dt 3.2)
Iz(t’ w)zlz (t’ w, b)':Jz(t’ w, b)+K(t, w, b) (3-3)
F,(t, w)=F,(t, w, b)= exp (I(t, w, b)) (349

where the integral in (3.1) is defined as a stochastic integral (c.f. [2])
(therefore it can be determined except P,-measure zero). Thus, we
have the following proposition (by theorem 1.1 in [2]).

ProPOSITION 3.1. F(t, w) is a stochastic integral, and

dF(t, w)=F(t, w) 3 b(x(t)) dz'(t) .

As a preparation for theorem 3.4, we shall prove some lemmas and
propositions.

LEMMA 1. Let {f.(w,\)} and g(w,\) be random wvariables with
the parameter n. If E{f.(w,\)’} <K where K is independent of n and

N, and moreover, if

lim P{l fa—g| 2¢} =0
uniformly with respect \, then we have

lim E{| fa—g [} =0 .
Proor. From E{f2} <K, where K is a constant independent of 7

and )\, by choosing a suitable subsequence we have

Eig} < lim B{f3} <K.
Therefore, for any ¢>0, we can take a positive number 7, independent

of A\ such that

- el & > 3
P{|fn gl >2}=16K for n=m,(e)
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Bl fa=g ) =E{l(1fs=01 S fa=a 1}

+E{x(1 /2= >\ g}

+y/P{ifa=a1 >SIEU S0 1)

for any n=n,. q.e.d.
PROPOSITION 3.2. Let 0=t,<t, < --- <t,_,<t,=t,

i, w)= S { S Ve @t -2 )]

and ||b]] = sup | b*(x) |. Then we have
B0, 0y s EBLW b (3.5)

Proor. We shall give the proof by induction with respect to
n. When n=1, (3.5) is easily obtained by evaluating the 2p-th moment
of the Gaussian distribution, for b%(x(0))’s are constants. Now, assume
(3.5) holds for n=m. Then

r=0

BTty 0= 35 (2P )BT 277 (t) {5 D@ @ b ) — 2 €D} T -

where
E] 72t S b @)@ )~ |
= B2 () EA(S V@)@t ~2(E) | B,
0 if r is odd.

=) B 720w B (S b e} Cnn—ta) ] if r=2s .
8.
Therefore, we have
n 2 < (2p)! (23)! - 2 s I 2p —28
B T2u0) S 5 o B o O stV [0 BT 7)
<35Ol __@ly N b1 =2 b e g,
s! (p—s)!

* y(A) means a characteristic function of a set A,
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! .
=___(2;")'(NII b tns)” where tn.=t. q.e.d.

PROPOSITION 3.3. Employing the same motations as in proposition
3.2, for any p>0 we have

E, {(exp J,(t, w))?} <2e*™M181*  p=0, +1, --- (3.6)
E,{(exp J.(t, w))?} <2er™Ns1%  p=0, +1, .-+ (8.7)

and if sup|t,.,—t,| —0, then exp J.(t, w) converges to exp J.(t, w) in
k =
the L*(W, dP,) sense (p>0) (see [2]).
PrOOF. By proposition 3.2,

E, {(exp J,(t, w))?}
=FE, {exp Ja(t, w, pb)} < E{exp J,(¢t, w, pb)} + E, {exp —J,(t, w, pb)}

<2 % 2 'Ez(J”(t w’ pb)zs)
=2 S:: 3 (2s )'<(2s)'(Np ol t)) —Qe? N11l1%

On the other hand, if sup | t,.,—t, | converges to zero, then {J,(t, w)} con-
verges to J, (¢, w) in L’(kW, dP,)-sense (see [2]). Therefore, {(exp J.(t, w))?}
converges to (exp J,(t, w))? in probability.

Using the Fatou’s theorem for a suitable subsequence {n,} we
get

E,{(exp J.(t, w))*} < lim E, {(exp J,, (¢, w))?} S2er™I101%

The latter part of the proposition is easily proved by lemma 1. q.e.d.
THEOREM 3.4. Employing the same notations as in proposition 3.2,
- we have

E_'z(Fz(t’ w)p)ézewﬁp’NI!szt(p:O’ ily b ') (3°8)

and if sup|t,,,—t,| —0, them exp (I,(t, w)) converges to F,(t, w) in
L»(W, dP,)-sense, (p=1,2, «+-), where L(t, w)=J,(t, w)+ K(t, w).
Proor. Since % 3 b'(x(£))’<3iN || b||’, we have

| K(t, w)| g-;—N il¢  for arbitrary w.

Thus, by (3.6)
E. {(exp I(t, w))"} = B, {exp J.(t, w)} el e < ggnstmivits (3 9)
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In the similar way, we get (3.8) from (3.7). As exp (I,(t, w)) converges

to F.(t, w) in probability when sup | ,,,—t,.| converges to zero, we can
) 3

apply lemma 1 by (3.9) to proving the last statement in the theorem.

q.e.d.

REMARK: If I*(t):S’ 3 bi(s, w) dat(s)+ {” e(s, w) ds where b¥(s)’s and
0 o0
¢(s) are B,-measurable, and sup | b*(s) | and sup|c(s) | <k, then we can
prove

E (eu(z)) < Qgd2NE™
z = .

The proof runs in the same way as in propositions 3.2, 3.3 and theorem
3.4.

We prepare the next proposition for proving the Markovian property
of the process in definition 3.2.

PROPOSITION 3.5. For any 0<s<t<o and fe B, we have

E:c {F,(S-I't, w)f(m(s-i—t)) l %s} =Fz(87 w)Ez(:) {Fz(s)(t, w)f(ac(t))} (3-10)
PROOF. Let 0=¢t,<t,< +++ <tp=8<tpn< +++» <tpin=8+t, and
tm+l_s=sz(l>0). Then

Trin6+)=Ju®)+ 33 5 B @ENE () —2'(E)
=Tu@)+ S, 5 bl )@ 6+ 811) —2'(s+5)

=Jn(8)+ 3 3 b@(ss, W)@ 611, 01— (51, W)

=Ju(s, W)+, wi) .
As is easily seen
K(s+t, w)y=K(s, w)+ K(t, w?)
and
K(s, w) and J,(s, w) are B,-measurable,

so we have

E_ {exp (Jnsm(s+8)+ K(s+1))-f(x(s+1))}
=exp (Ju(s, w)+K(s, w)E., {exp (Jo(t, w)+K(t, w)f(¢)}  (3.11)

by the Markovian property of the Brownian measure.

If sup|t,..—1;| converges to zero, then a suitable subsequence of
J.(s, w) converges to J,(s, w) almost surely. By this fact and theorem
3.4, we get (8.10) from (3.11). q.e.d.

Now we can define a process on B,.
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DEFINITION. We define a system of measures P,, on B, by
P,,,(B):S F(t, w) dP, for Be®B,. (3.12)
B
By theorem 3.4, the integral in the definition is finite.
PROPOSITION 3.6.
P, .20 (3.13)
P, . (W)=1. (3.14)
For s<t and BeB, we get
P, (B)=P,B) . (3.15)
ProoF. 3.18 is obvious from the definition. As to (3.14), by
proposition 3.1 we have
Fo(t, )= F.(s, w) SH(@(6) dz'(s)+F.(0, )
0
where F,(0, w)=1, and F,(t, w) e LW, P,). Therefore, by [1] we have
E(Ft, w))=1. For (3.15), taking f=1 in proposition 3.6, we get

P, (B)=E.{X(w e B)F,(t, w)}
=E.[X(we B)E,{t, w) | By} ]
=E.{X(w € B)F(s, W)E,,,(t—s, w)} .

Since E.,,(F,.(t—s, w))=1 by (3.14), we have

P, .(B)=E,{X(w e B)F,(s, w)}
—P, (B). q.e.d.

THEOREM 3.7. There exists a unique system of Markovian proba-
bility measures {P,}(xe R") on B. such that

for Be®B, Py B)=E/(F,t, w): B)=P,(B) (3.16)

P, and P are absolutely continuous with respect to each other if
they are restricted on B,. .
For some countable dense subset S in [0, ), we define W as the
set of all functions Z(t, w)=w from [0, o) to R¥ which satisfy
lim Z(s, w) <Z'(t, w)< hT?_:i‘(s, w)

st
,gs SES

for any t and i. Then B, is a Borel field generated by cylinder sets
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{w: #(s) € A} 0<s<t where Ae®B”, and B. is a Borel field generated
by sets {w:Z(s)e A}, 0<s< oo,

Now, by the Kolmogorov’s extension theorem [3] and the Doob’s
existence theorem of the separable version [4], the relation (3.14) implies
that

(i) there exists a countable dense subset S in [0, ),
and

(ii) there exists a Probability measure P, on ®B.. such that

P({w: B(t) € A, 6. 58) =Pu({w: at) € A, 1, S1)  B.17)
for any A, e B~
Let W, be a subset in W whose elements are continuous in [0, t].
Then W,e®B, and W= W, €B.. On the other hand, by (3.14) and

t"Ioe
(3.17) we have
pz(Wt)=Pzt(W)=1 1]
Terefore P(W)=1 or P(W—W)=0 (3.18)

This shows the existence of the probability measure P, on (W, B..) such
that

1,2,00¢

i= n $=1,2,+0m
P,({w: 2(t) € A; t,<t})=P, ({w: 2(t,) € A;: t,=t})
for any A,e®B”, or
P, {B} =P, ,(B) for any Be®B, .

The uniqueness of P, is obvious.

Since 0< F,(t, w)< o almost surely with respect to P, meaure, P,,
and P, are absolutely continuous with respect to each other on B, by
definition, that is, P, and P, are absolutely continous with respect
to each other, if they are restricted on B,. '

Now, for any s,t>0 and any Be 3,

E.(X(B)f(x(s+1))=E,(X(B)F.(t +s)f (x(s+1)))
=E,(X(B)E, {F.(t+3)f(x(s+1))|B,})
=E,((B)F.()E, ., {F)f (x(t))})
=E(X(B)E.» {f(*)})
by proposition 3.5. :
Namely
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E.(f(x(s+1)) | B,)=E,,(f(x(t)) almost surely.

This is a Markovian property of the system {P,}. q.e.d.

DEFINITION. We say that the process (P,, W, 8B.) is a Markovian
process corresponding to the generator

A=—Z + N ‘(w)———

4. Properties of the semi-group corresponding to (P, W B.)

For fe B, we define

T.f (@) =E.f(x(t))=E(F@O)f () . (4.1)

Then, by theorem 3.7 we have

ProOPOSITION 4.1. T, is a mapping from B into B such that

(i) <f f=0, then T,f=0

(ii) T1=1

(i) T,4,=T.T,.

In this section we shall investigate the semi-group {T.}.

ProrposiTION 4.2. If feC, then

1‘15101 T.f(x)=f(x) for any zeR.

If feC, then the comvergence is umniform with respect to =, i.e.
1%’3 sup | T.f(x)—f(x)|=0.
PROOF.
T.f (@) —f(@) = E(f(@(t)) — ELf (@) + E(f(@(®) —f(=) .
In the first place,

(v‘-:‘)’

BN —f@)=] v - () —f @)

1/27rtN
converges to zero if fe C, and moreover, the convergence is uniform if
feC.
On the other hand,
l (Ezf(x(t»)_E'z(f(w(t)» < IFIE(F@)—-1)) (4.2)
where | f [|= sup | f(®)].

IGR

As | K(t, w)| gEH bt for all w, we get
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z(, :;(t) -1 |)SE (eIJ (n+x(m__1)SE (eNlﬂllezteIJ,(t)l 1)

<ezv/z||b|i%z z(l a;(t) |) 1<eN/z||bllﬂtZ (J;z(t) )_1. (4.3)
=0 pl Db: :

But, by proposition 3.2

E(Ji")é%!’)!(N 1B [ty =pIAN || b[*t)” . (4.4)

Thus from (4.2), (4.3) and (4.4) we have
| Ef@®) — ELf@®)]
e 7 el LI i [P RO

The sum in the right-hand side of (4.5) is uniformly convergent for
bounded ¢.
Therefore, E,(f(x(t)))—E,(f(x(t))) converges to zero uniformly. q.e.d.
LEMMA 1. For any Be®,, we have

Pz(B)écl eclt I’ -Pz(B) (4'6)
P(B)<C, e V' P(B) 4.7)

where C,, C, ¢, and ¢, are positive constants independent of t, x and B-

PROOF. P (B)=E(F.(t)X(B))<V P(B)E,(F.(t))
_ <V 2ewiviny/ P (B) by theorem 3.4.

PB)=E 5B = Y PBE( 1

F.(t) (F. (t))2>
s/P,(B)E( ())szeal*m“’t VP(B) by theorem 3.4.

PROPOSITION 4.3.

(i) If feC, then T,feC,

(ii) if feC, then T.feC,

(iii) if feC., then T .feC.,

(iv) f feC,, then T,feC,.

Proor. For any we W, we define w+a in W (ae R”) as

x(t, w+a)=x(w, t)+a=(x*(w, t)+a’) .

Then, by the translation invariance of the Brownian motion we have
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B, f(w)=E(f(w+a)) (4.8)

for any B.-measurable function f (which is integrable with respect to

P,-measure).
Now,
I=T.f(x+¢)— Ty(x)
= _,+e(e_‘=“'“”f(w(t)))—E'z(e%“'“”f(w))
= }.iff {E., (" f(a(t))) — E(e""* f(a(t))}

where IL,(t, w)=J,(t, w)+ K(, w) is defined as in proposition 3.2. Using
(4.7) we have
| I| = lim | E, {e'"**° f(a(t)+¢)— e f@(t))} |
= E’EE’(I glnt w0+ — et |)|| £[| 4 E (e | f@(t)+€)—f(x(t))
But
I B | fo)+e)—fa()]

< lim V' E,(6¥»2) E(f(2(t)+ &) — f(x(t)))*
<2012V B (f(2(t) + &) —f(x))* by theorem 3.4.

E(f(x(t)+¢)—f(x))* converges to zero if fe C.* Moreover, if fe C. the
convergence is uniform with respect to .

On the otther hand, as b(x)=(b'(x) -+ b¥(x)) is bounded and uniformly
continuous, \ 1S (b (x(t)+€)—bi(x(t)))’dt converges to zero uniformly with
respect to » and w. This means by [2] that

In(tf w+e, b(’))=In(t’ w, b(' +€))

converges to I(t, w, b) in LW, dP,)-sense uniformly with respect to «
and n, and therefore e’»*¥+*® converges to e’»**» in probability (P,)
uniformly with respect to n and x.

Then, lemma 1** in section 3 shows the uniform convergence of
E (| eln®e+9 —eln®® |) to zero. Thus we have proved (i) and (ii).

* Even if f&B, we can easily prove
Eo{ f(2lt)+€)— fx|t)}2~0 as e} 0 for t>0.

Thus, the proposition is strengthened as follows: if f€B, then T:fe€C for ¢>0.

** In this case, instead of one probability measure, the system of probability measures
with parameters (namely ) is considered. But the lemma holds also in this case, and we
do not need any essential change in the proof.
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Now, let D be a compact set in B. Then
Il]im P,(x(t) e D)=0

and

ll?m P(x(t)e D)=0 (4.8) by lemma 1.
Therefore, if feC.. and|l‘im f(x)=a, then we have

| f(®)—a|<e, x¢D, for some compact set D,

and
| E(f(z(t)—a) |
=| E(f(x(t))—a : 2(t) ¢ D)+ E(f(z(t))—a : 2(t) € D]
<|eP(x(t)) ¢ D)+(la |+ f|)P(x(t) e D)) .

Noticing (4.8), we have
lim T‘f(x):“ljﬂ E(f(x(t)=a. 4.9)

|x|—>00

This result and (i) mean that if feC., then T.feC.. Especially, if
feC,, then taking a=0 in (4.9) we have

T.feC,. q.e.d.
In spaces C, C, C.. and C, the norm is defined as

| fll=sup | f() ]| .

zZ€ER

By means of this norm we can consider those spaces as Banach spaces.

Then, combining propositions 4.1, 4.2 and 4.3, we have the follow-
ing theorem. '

THEOREM 4.4. The semi-group T, on B can be restricted on C, C,
C. and C,. Especially on C, C. and C,, this semi-group is strongly
continuous.

REMARK: By the similar argument as in proposition 4.4, we can
prove that if b%(x)’s are k-times differentiable and the derivatives of
b'(x)’s up to the k-th are contained in C, then T, is a mapping from the
space of k-times differentiable functions into itself.

5. Representation of the generator
DEFINITION. We define ¥, 2. and %, as the generators of the strongly
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continuous semi-group {7,} on spaces C, C. and C, respectively (in
the sense of Hille-Yoshida’s theorem). &), #2..) and H,) are their
domams

In this section we shall 1nvest1gate the exphclt local form of these
generators and their domains.

PROPOSITION 5.1. If f is a twice differentiable function, whose
derivatives up to the 2nd are continuwous and bounded, we have

lim (7. f (@) —f (@) = Af(@)

Sfor any x. If f and their derivatives up to the 2nd are umiformly
continuous, then the above comvergence is umiform with respect to .

ProorF. By theorem 1.1 in [2], e’ f(x(t, w)) is a stochastic integral
and we get

de (@) ={e (o) - = L)
(st L))

+ 1o P ao)r a0+ o0 5, Ly

e b e + L))o

=e! WA f(x(t))dt +e" P bi(x(t)) + (x(t))dx‘(t»

Now, e’ ‘”(Z b‘(x(t))+ (x(t))) is in L(W %[0, t], dP, x dt), so we have by
[2]
(e f @)~ @) =E(| e vas@erat)=[ T.4r@nt,
o
EAf®)—f@)=|, T.Af@at .

In proposition 4.2, we have seen that T, Af(x)—Af(x) (t]0) if AfeC,
and the convergence is umform if Afe C Thus the propos1t10n is
proved. q.e.d.

DEFINITION. For feC, we set
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s@=2{{ L@+ s @-apepu-iw} 61
r* Uex, wy

where K, =K. (x)={y:>.|y'—2' [’<7r}, wy is the volume of surface 9K,
of K, and do is the volume element of 9K,. If I:Iliol S,.f(x) exists, we
define Sf(x) as

Sf(x)= lrigl S, f(z) . (5.2)

Now, let g, be a hitting time to 8K ,(x), namely,
o,= inf {t: x(t) e 0K,} .

Then, o, is a Markov time, as x(f, w) is continuous.
DEFINITION. For feC, we set

: D, f(z)= E(f(x(a,))—f(x) . (5.3)
= :u( r)
When lim D, f(=) exists, we define Df(@) as
Df @)= lim D, f(@) . (5.4)

Then, by Dynkin’s theorem,* we have
ProposITION 5.2. (Dynkin)
HA)={f:feC, Df(x) exists for all x and Df e Cy}
IU.)={f:feC, Df(x) exists for all x and DfeC.}
SAS{f:feC, Df(x) exists for all x and Dfe C}
and if fedQ,), 3N.) or XA), then we have

Df(@)=%f(@), Df(x)=A.f(x) or Df(x)=Uf(x)

for any x € R, respectively.
 The main result in this section is the following.
PROPOSITION 5.3. When b(x) satisfies Lipschitz condition, namely,
for any x e R there exists L, such that

|b'y)—b42) IS L, VETy —a T, (5.5)
then we have
(i) | E,(f(2(0,)))—Ey(f(2(0,))| < Cr (5.6)
for any ye€ K(x) where C is independent of x and y and
(ii) lim | D, f(z)—S,f(2) [=0 . (6.7

* c.f foot not in page 56.
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The second statement (5.7) shows that Sf(x) exists if and only if
Df(x) exists, and in this case Sf(x)=Df(x). To prove the proposition
we need several lemmas.

LemMa 1. E,(a,):%w , (5.8)

E(or)=k,r™ (5.9)

where k, 1s a constant, independent of r and x.

The proof is easily obtained by properties of the Browﬁian motion.
Especially (5.9) is equivalent to the existence of the nth moment of
0,=0p,e

LEMMA 2.

E (&0, —o)&(0,) o) =0"L. (5.10)
LEMMA 3. Let o be a bounded Markov time (6<T), and
70, 8)= | 1(025) 5 t@@©)da'6) (5.10),
Then, we have
E(J(, b)=C, || b |I' Eo)
E(J(o, by =C, VT| b|VE ™) nz2 (5.12)

where C,’s are independent of b and x and || b |l=s‘up | b*(x) |.

ProoF. First, we remark that J,(o, ) is well defined as a stochastic
integral, for y(o<s) 3, b'(x(s)) € B,. Set
J@)=d40,0)= | 1029 2 baE)da'ts) .

Then J.(¢)=J(g, b), J(o)=0 and J, (o)™ is a stochastic interal which can
be written as ‘

dJ (o) =2nJ (o) Y(t<0) 3 b'(a(t))dx(t)
+2n(2n—1)J,(6)"* 3 bi(x(t))y(t<o)dt .

For almost all w such as t<o(w) and u<t, we get
X(u = 0)b'(w(u))=b"(2(w)) .

Therefore, J,(¢)=J(t) for almost all w with t<o(w) by [2]. Thus,
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dJ (o)™ =2nJ(t)" Y (t = 0) 3 b (a(t))dx'(¢)
+2n(2n—1)J(ty" 3 b))t < o)dt .

According to proposition 3.2 we have
2 | @nJty™yt=0)) S Bila(®)dt<oo |
and
E (J(oy")=E(J{o)")= S:Zn(zn—1)5—7,{-7(3)"‘"1(023) > bi(a(s))}ds .
If n=1,
EJ@N=2N b | PAoza)ds=2N | b |1 Ey(0) .
If n=2, according to the relation
E(J(s)"*)=cy || b ||"~*s™

in proposition 3.2, we have

E(J(oy"=2n2n—1)N || b|* S:VE—z(J(S)‘"“)Pz(GzS) ds

<cll|b|™ STVS’”“’P,(ags) ds
Jo

<cz 1B VTY/ | Pozo)s— ds

<c, VT| bV E(a™) . a.e.d.

LEMMA 4. Let 0,=0sx ), 6r=min (d,, T), where T is a positive
constant and

I(or, b)=J(07, b)+ S(—% SHEON)dt . 6.19)

Then, we have
E(I(o, ) =C(I b+ b I* r*)
E(I(or, ) <C, (VT B | v+ b ||* r*) n>2,

where C,’s are positive constants independent of r, x and b.
ProoF. Using lemma 3, we have

E,(I(r, by <27 B0, )+ B | "L S vae)yat) "}
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éC’(lle’Ez(ar)Hle‘ E.(6%) if n=1,
SCWVTI| bV EeF )+ b Efor) if n=2.
By lemma 1, we have
E (o)< E(o0)<k.r™,
and
E (I(or, B))<C(l| b+ b || ) if n=2,
E (o7, by <C, (VT b |P" r**+|| b || r*v) if n=2 . q.e.d.

Let o, (k=0,1,2, ---, m) be a Markov time such as 0=0,<0,<0,<
+++=0,=T where T is a fixed constant, and let . (w)=(fi(w), «--, f¥w))
(k=0,1,2, ---,m) be B, ,-measurable vector random variables which
satisfy sup | fi(w) |[<M< . Define

fy(w) if t=0,
f(t)y=1{f(w) if 6,<t<0y k=0, 4+, m—1,
0 if o.<t. ' (5.14)

Then f£(t)= 3 (0. <)t =0, )f(w) is B, measurable. Therefore, the
¢

stochastic integral g SV fit)dxi(t) is well defined.
0

LEMMA 5. We have
[[Erodon=3(Eroee.)-26)) 615

almost surely with respect to P.-measure. .
Proor. Let 0=t,<t, < --- <t,=T. If sup|t,.,—t,|—0, then a
1

suitable subsequence of {I,,}={n§§‘,f ‘(t,)(w‘(t,+l)—x‘(t,))} converges almost
: =1 )
surely to the stochastic integral

[z rwane .

0

On the other hand, since f(£)=0 for ¢>o0,, we have
3 S AW 00— 2 o)~ I,

=S 3 {3 e -2 )} 6.0



54 MINORU MOTOO

where I(k)’s are the random variables such that

Lan1S0: <ty <trma< oo <rpinaSOem<tigin< **° .

Then, as f(t,)=7,(w) for I(k)<l<I(k+1), the above difference (5.16) is
equal to

B S AN @)~ G~ @ @) —2 )} . (1D

From the continuity of x(f) process, (5.17) is seen to converge to zero
(for all w) if sup|t,,,—t,| converges to zero. q.e.d.

LEMMA 6. Let f(x,w) be a function on R'x W which is B xB.-
measurable and X(w) is a B,,-measurable real random variable. Then

E(f(X(w), w3) | B,+)=Eior(f(%, W)) lamx (5.18)

almost surely (with respect to P,-measure).

ProorF. First, we notice that (5.18) is easily proved for the case
where f(t, w)=g(x)b(w). Then, from this it is seen to follow that (5.18)
holds in general. '

LeEmMMA 7. Let f(w) be a bounded B,-measurable function, where o
18 a bounded Markov time (6<T). Then, we have

E(f(w))=E,(¢'='"*f(w)) (5.19)

where I(c, b) is defined in the same way as in lemma 4.
PrOOF. As o(w)<T, we have B,CB,, and it is sufficient to prove
that

E (e"="8 f(w))=E(e’=""¥ f(w)) . (5.20)
Let 0=t,<t,< +++ <t,=T, and define
ba(s)=bx(t)1(t:=0) if t,<8<ten
Ba(s)=0 if s<o

=bx(c+t))p(o+t,<T) if o+t,<s<o+t,,, .

Then, we can define stochastic integrals

T={ = s,

4

~

=, S o)

and
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~

I=J.+ S:(—% S ba(e))ds ,

N

L=d+ | (S GE))is -
Applying lemma 5 to J,, we have
Jo= B AOHE<T) DGO+ + ) —240+4)
= S AO+H<T) TV @t W (bersy W) —(ts, 02))
and
[[(—% =6y )is={"(—1 = b, wi)y)ds .

Thus, we have
B (6w nf(w)) = E{eTnf(w) B (et | B,.)} - (5.21)
On the other hand, by lemma 6, we have

~ n—1 r—
= o0 = 1 ¢ ¢ Pt 2
E (e %ﬂ)=E,(¢)(0kz=:o“('ksr"’§b TR SUCIPR IS § L) JPLTMOY ds)

p=c

therefore,

E (et af(w)) = E(enf () Eyio (€5 o=s) -
Now, if sup|f,_,—t.| converges to zero, then
k
T
L]

[ = @@ +bie)—bE)yds and |5 (Be)-baE)rEs0)ds

converge to zero. Hence by [2] T,.+7,,, I, and I,(t—p) converge to
I(T), I(0) and I(t—p) in L’sense, respectively.* Moreover, since
B+ Tnf (W)Y, BAenf () Eyia) (€9 |o=y) and B, ,(¢'»"~")? are uniformly
bounded as is mentioned in the remark to theorem (3.4), we can apply
lemma 1 in section 3 and get

E (e " f(w))=E,(e" " f(w)E. (" ") |o=0) -
By (8.13) in proposition 3.6, we have

E_'z(o')(e“T_p)):Pz(V)(W)El .

* Especially, the L2-convergence of In(t—p)—I.(t—p) is uniform with respect to z and p,
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Thus, (5.20) is proved. q.e.d.

LEMMA 8. E (g,)<cr® for r<1/(|b]]) and ye K.(x) where ¢ is a
positive constant independent of r.

PrOOF. We can construct a twice differentiable function f whose
derivatives up to the 2nd are in C, and which satisfies the relation:

f(y)=% Syt —at)? for any y e K,()

and || f||= sup | f(x) |<cr? in the whole space. Then, by proposition 5.1,
fedA)cHA)cHA) and

Af@)=1+ S VO~ for ye K,
or
Af(y)>1—4|b]r.
By Dynkin’s lemma* we get

E(o)1—41b1n) s B[ Aseonds)
= z(f(w(ar)))—f(w)<2 ILf =2 .
Now, as 1—4||bl||r >3 by the assumptlon, we have
E (o)=cr". q.e.d.

PROOF OF THE PROPOSITION 5.3.
Setting 6=0, and 6=min (¢, T'), where T is a fixed positive constant,
we have ‘

L= | E(f(x(0))—E(f(@@)x(e<T) | < || f || E(e""x(6=T))
< I fIIVE(e"™)P(6=T)

for any ye K(x)=K,. As a*:aaxm) 2 0ok, WE have
E (o™ < E(o*") <kr™

by lemma 1, and then P,(6=T)<ecr™, where c is independent of x, ¥
and . Therefore

L<er . (5.22)

* The fact that {P,, W8.)-process has a strong Markov property, is easily deduced
if we notice that the strongly continuous semigroup {T:} can be restricted on C. and
every element x(f, w) in W is continuous with respect to t. We can also prove this fact
directly, modifying the proof of lemma 7.
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E,(f(a) (e < T)=E(f(@(@)x(c<T))
=E, (' f(x0))y(6< T)
by lemma 7, we have ‘
L=| E(f(x(@) (@< T))—E(f(=(e)x(c< T))
<E(e@—1)|FIISE ™| @) fIl
<AV E(IG)EE™ +¢@).

Then, by lemma 4 and the remark to theorem 3.4, we have
L<er. (5.23)
The same argument as in proving (5.22) leads to
L=| B(f(z(@)x(e< T)—E,(flz(@))|<esr . (5.24)

When noticing that ¢, ¢, and ¢, are independent of x, ¥ and r by (5.22),
(5,28) and (5,24), we have proposition 5.3 (i), (5.6). Now, taking y=x
in (1), we have

I=| E,(f(x(0))— E.(f(z(o)x(e < T)|<er® (5.22)'.

and

L=| B(fe@(6< T) - E{f@(@)(1+10) + 1@ 1@< 1)} |

z
<z, 100 o) MV EA@R BT+ ) .

Then, by lemma 4 and the remark to theorem 3.4, we have

L<ca™ . . (5.25)*
Consider
I= E’,{(I—I(&)+—;—I(6)’)x(6< T)f(x(a))}
—B{(14+1@)+ 110 )fe@n@< D} |
where

I(6)= S:x(o >5) S b‘(x)dw‘(s)—%gj by bi(x)ds

* Without loss of generality we can assume that r<1.
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= ;‘, b‘(x)(m(&)—x)—%(z“, bi(x)*)e (c.f. lemma 5).

Taking into account the Lipschitz condition (5.5) and
er)=sup | fW)—f@I 10 (r 10), (5.26)
we have
| E(@ - L@@I= £ 1L 5146y —b@) | ds}
<2(|f1l1b|| NLyrE () <c'r

E{| IG)— 1) | f((@)—f@)} <e(r) VE(I(B)—I(3))
=¢&(r) VE(I(@, b(-)—b(x)))

=c"¢(r)r (by lemma 4),
and )
E{ 1 11G)~ L@@+ L@) S @)}
<E{11 1@, b()—b@)I@)+L@) I £ |
<2 VE(G, 5()— @) EI@)+L@) || £
<c'"r’ (by lemma 4),
thus,

L<| E{I0)— LO) (@)} + E{| [3)—I,@)| | f(2(0)—f(x)|}
+%E'm [(1(8) — I(9))(1(8) + 1)) | < csr(e(r) +7) . (5.27)

By the same procedure as in proving (5.22), we can prove

L=

E{(1+16)+L 1@ Jf=@m@< 1)}

—B{(1+ L)+ L L@ @)} | <er*,  5.28)
where I(o)= g b(x(a))(x‘(a)—x)—%(z b(x))o. Finally, we get

I_7=

E{(1+1(0) + T L0) )f@(o)| ~ E{(1+ 5 b@)(a(0) 2 (&(o))
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<E{(- 1= peo+ LS @@ o -9}

+E{| (-2 b+ HE veEe) - )dEo @) |

B @0 (S bEO) o) e S bEr)lif 1

The first term vanishes by lemmas 1 and 2, the second term is less
than ce(r)r? by lemma 1, (5.26) and the fact that 3 (z'(0)—2')'=1? and
the third term is less than c¢r® by lemma 1. Thus we have

LZeri(e(r)+r) : (5.29)
By (5.22), (5.25), (5.27), (5.28) and (5.29), we have
E(f(x(0))—E(1+ 3 b'(@)(=*(0)—z))f (x(0))=r'e*(r)  (5.30)

where e*(r) |0 ifr]oO.
On the other hand,

0<E(0)—E.@)<E(0—T)yo=T)),
E((c—T)y(ozT)=E((0ZT)E,r(0)) <P o= T)er* by lemma 8,
and P,(dg T)<cr* by the same lemma. Hence we have
| E(0)—E.(0)|=cr (5.31)
Similary,
| E(0)—E(0) | <ert. (5.82)

| E(6)—E,(0) | SE(|e'®—1]d) | = VE(I(6e")E(7") .

By the same argument as in proving (5..23) (therefore, by lemma 4 and
the remark to theorem 3.2) we get

| E(0)—E(3) | <er**. (5.33)
By (5.31), (5.82) and (5.33), we have
| E(0)—E(0)| <cr*?

or

E,(o)—§|<cr°” (5.34) by lemma 1.

 Since #(o) is uniformly distributed on 8K(x) by P,-measure, it is
seen by (5.30) and (5.34), that (5.7) (proposition 5.3 (ii)) holds true.
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Thus, all the statements of proposition 5.3 have been proved.
Combining propositions 5.2 and 5.3, we have the following
THEOREM 5.4. If b(x) satisfies the Lipschitz condition (5.5), then
(i) S=D (this also means that the domains of S and D coincide

~ with each other for any x e R¥).
(ii) dQ)=Cn{f:Sf exists and SfeC.},
dA)=C.N{f:Sf exists and SfeCy},
SA)cCN{f:Sf exists and SfeC},
and
If fed@), ¥A.) or HA), then Sf=Uf, A.f or Af.

6. Remark to the properties of the process

As P,-measure and P,-measure are absolutely continuous with re-
spect to each other if they are restricted on B,, a condition which is
determined within a finite time is satisfied almost surely for (P,, W, %;)-
process if and only if it is satisfied for the Brownian motion.

For example:

1. For N=1, the law of the local iterated logarithm is true for
(P,, W, B.)-process. For N=2, the similar law holds, too.

2. If F is a compact set in R, then P, (x(t)e F for some t>0)>0
if and only if the capacity of F' is positive.

PROOF. P, (x(t)e F for some t)=0
if and only if P (x(t)€ F' for some t<T)=0 for any T.

By proposition 3.1, we have

' P.(x(t)e F for some t< T)=0

if and only if P,(x(t)e F for some t<T)=0

or equivalently P,(x(t)e F' for some t>0)=0. The assertion is well
known for the Brownian motion ([5]). q.e.d.

3. For N=2 or 3, the path of the process has infinitely many double
points almost surely. On the other hand, for N=4 the process has no
double point almost surely (c.f [5]).

Ete.
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