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The situation considered is that in which measurement of the
characteristic of interest is not exact but subject to appreciable error.
The error is assumed to be unbiased and independent of the actual
value of the characteristic measured. The population and error variances,
o* and o}, are assumed to be such that ¢/o, has a known lower limit
which is greater than zero. The probability distributions involved are
assumed to be normal while the actual values and measurement errors each
form a random sample. For suitable specified acceptable and unacceptable
fractinos defective, and for ¢, assumed known and unknown, this paper
presents one-sided acceptance inspection criteria which are optimum in
a specified sense, and which have the property that the producer’s and
consumer’s risks have specified upper bounds.

1. Introduction

Acceptance inspection is a procedure for deciding whether an item
lot is of acceptable quality on the basis of a sample of items from the
lot. Let us suppose that the characteristic of interest is measurable and
that an item can be classified as defective or nondefective on the basis
of a given upper or lower limit for the value of this characteristic. If
only the knowledge of whether an item is defective or nondefective is
used, the acceptance inspection is said to be based on attributes. If the
values of the measurements themselves are used, the plan is said to be
based on variables.

Let us consider some properties of the ordinary type of aceceptance
inspection plan (attributes or variables). The items inspected are
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considered to be a random sample from an infinite population of items.
Let two fractions p, and p, (p,<p,) be specified. The lot is considered to
be of acceptable quality if the fraction p of defectives in the item
population is p, or less. The lot is considered to be of unacceptable
quality if the item population has a fraction defective of p, or more.
The plan is constructed so that the probability of rejecting the lot is
at most o when the item population has a fraction defective of at most
p, and is at least (1—/3) when the item population has a fraction
defective of at least p,. The quantity « is called the producer’s risk
while B is called the consumer’s risk.

Consider the case in which there is no measurement error. That is,
the value of the measurement equals the true value of the character-
istic measured. Then a measurement value lies in the defective region
if and only if the item is defective. When the measurement is subject
to error, however, its value may be in the defective region when item
is nondefective, and vice versa. Thus the fraction defective in a sample
is not necessarily the same as the fraction defective in the set of cor-
responding measurements. For the case of acceptance inspection by
attributes, this problem of misclassification is discussed in reference [1],
pp. 23-24.

When variables are used, the population of interest is the population
of true values of the characteristic measured. Hence the problem is to
combine measurements containing error is such a way that the require-
ments of producer’s and consumer’s risks are satisfied for the population
of true values. To reduce the magnitude of the measurement error,
several separate measurements of the characteristic of interest may be
made for each item of the sample taken from the item lot. This
procedure yields item averages which have the same expected values
as the individual measurements but smaller measurement errors. For
the plans developed in this paper, the same number of measurements
are made for each item; call this number m.

The value of a measurement equals the sum of the true value of
the characteristic measured and the value 6f the measurement error.
To derive the results of this paper, several assumptions are made
concerning the probability properties of the true values and the
measurement errors. These assumptions are
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1) The measurement errors are statistically independent of each
other and of the true values. They form a random sample from a
normal population with known zero mean and variance o2

2) The true values form a random sample from a normal popula-
tion with unknown mean g and unknown variance ¢°. The value of
o/o, has a known positive lower limit R and a known upper limit R
which may be positive or infinite

(0<R<0/0,sR<») or (0<KR=o0/6,<R=w).

Let us discuss the implications and practical validity of these
assumptions.

The assumption that the true values and the measurement errors
form random samples from infinite populations does not seem to be very
restrictive. This should be approximately the case if the items selected
for measurement are a legitimate sample from the lot and if the items
are produced and measured under standardized conditions. The assump-
tion of normal populations is not a severe limitation and is approximated
in many practical situations. This point is considered in [2], pp. 49-50,
and the discussion will not be repeated here.

If the measuring apparatus is of good quality and trained personnel
are used, it is often permissible to assume that the remaining conditions
of 1) are satisfied. By accurate calibration, the measurement error can
be made very nearly unbiased and almost independent of the magnitude
of the measurement.

With respect to 2), conservative values for the constants R and
R can usually be obtained on the basis of past experience with situ-
ations of a similar nature. It is important, however, that the values of
R and R be chosen without any knowledge of the measured values for
the items selected from the lot. Otherwise, the probability properties
derived for the criteria presented in this paper might be appreciably
changed.

Only one-sided acceptance inspection criteria are developed. That
is, only situations are considered in which an item is determined to be
defective on the basis of a single limit. There are two cases. In one
case an item is classified as defective if and only if the true value of
the characteristic measured exceeds a specified value U. In the other
case an item is classified as defective if and only if the true value of
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the characteristic measured is less than a specified value L. Let us
dispose of the second case once and for all by replacing each observa-
tion by its negative and replacing the lower limit L by the upper
limit U=—L.

The method used to develop the one-sided criteria for the case of
an upper limit is suggested by that used by W. Allen Wallis in [2].
The one-sided acceptance criterion in [2] is of the form

Accept the lot if and only if z+ks<U.

Here, z is the mean of the values obtained for the N items sampled,
and s is their standard deviation (computed using N—1 in the denomina-
tor). This criterion has the property that
P{accept lot [p=p}=1—a
(1.1)
P{reject lot |p=p,} =17
For the case o, known, the one-sided criterion presented in this
paper is of the form

Accept the lot if and only if Z+ks< U+ Vo,
For the case ¢, unknown, the criterion is
Accept the lot if and only if Z4+k,s<U.

Here, the value for an item is the average of the measurements made
on that item. In most parametric situations, the criteria approach the
criterion of [2] in the limit, as the number of measurements becomes
infinite, see subsection 2.5, and have the following property :
Suppose we may assume that
0<R=<o0/6,<R< = or 0<R<0/6,<R=o.

Then, if R, R, m, p,, and p, satisfy a certain condition (the condition depends
on whether we are assuming ¢, known or unknown), criteria of the given
form (i.e., Z+ks<U+ Vo, for o, known, Z+ks<U for o, unknown)
satisfying (1.1) exist, and the recommended test is the one (of all these)
requiring the least sample size N. Note that the case of R infinite is
of course of special interest; in many practical situations (where p, and
p, are not too close, because of restrictions on the size of N), the
condition on R, R, m, p,, and p, will be satisfied for R infinite, so that
no finite upper bound need be assumed for ¢, and this case of special
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interest will in fact obtain.

To apply the criteria of this paper, it is not necessary to make
direct use of z and s; the short-cut methods outliﬁed in [2], pp. 33-41
are directly applicable if the value for an item is taken to equal the
average of the measurements made on that item.

In the ensuing derivations, we shall assume that 0<p,<p,<1/2,
and that

1) N is not too small (say N=5)

2) a+p<1

8) B=1/2 (assumed only for the case g, known).

Conditions 1) and 2) correspond to those postulated by Wallis in
[2], and are intended to insure the validity of the fundamental normality
assumption and the simple algebraic relations among the test parameters
resulting therefrom. In the present discussion, the normality assump-
tion is that s, the standard deviation of the item averages, is distributed
normally with mean V/¢°+¢%/m and variance (¢*+0%/m)/2N (with the
“rounding upward’’ provision discussed in [2] on p. 61).

Condition 8) is an added assumption found useful in the present
discussion. ‘

2. Statement of results

2.1. Notation

Some of the notation has already been introduced. Further notation
is as follows:

Vlfr?r eV di=s
Ke

K,=K,, K,=K,, K=K.+K,
S=VER+tm', S=VR+m*
» =K.R—K,R

¢=K,S+K,S; if Kz=0, ¢ >0 since a+B<1.

- K, K =(£)
q P o=(g )P
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() - o)
feo, R”=(w+KR)V'R*+m™, i:1,2
gr(v)=(mv*+K})'"?, i:1,2

K¥(v)= le.R(’v)Ef:l.('v) if v=d
Fre, g(W)=£v) if v=d
fr, d0)=f(v) if v=q

Ki(v)=49c(v)=g(v) if ¢g=v=p
fx,.n('v)Efa('v) if v=p

4(v)=K¥(v)— K}v)

2(v)=K,K{(v)+ KK (v)

k(v) = EI(E’)

e e e larl

_1_ 2K'+3%(v)
N(v)—§+—m)—

(Note that N(v), as defined, is to be rounded to the nearest integer;

this corresponds to rounding N(v)—1/2 upward, as suggested on p. 61
of [2].)

v —2KSS(S—8)_(K:K,RS+K,K,RS)
L=

AP ol
v,: the unique solution of

[0 +( 52 ) ri0)— 0u0) Jom KR~ K21=200,(0) — Smo]

in the interval e<v<p.

2.2. The Case o, Known

The situation of principal interest is that in which p,, »,, « and 8
are specified (where, as discussed on p. 7, we assume p,<p,<1/2,
a+pB<1 and B<L1/2).

If it can be assumed that 0< R<0d/0,<R<w or 0<R=Z0o/s,<R=co,
then a test satisfying (1.1), with acceptance criterion of type

r+ks<U+wva,

exists if and only if I<d, and the recommended test is given by the
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acceptance criterion
r+ks<U4v0,
where v, is defined as follows:

If A>0 and »,<q, v,<q, then v,=u,
If A>0 and v,<q, v,>q, then v,=(v,, v,)

If A>0 and v,2g¢q, then v,=max(q, v,)
If A=0, then v,=v,
If <0 and c¢=d, then v,=d
If <0 and c¢<d, then v,=min(d, v,)

where (,) denotes whichever of the two arguments assigns the smaller
value to N(v), and

ko=2(vo)/ K.
The N (number of items required by the test) is given by max[5, N(v,)].
Note that the parametric situation A <0 will often obtain, in which

case
v,=min(d, v,)

and, if, further, ¢>d,
v,=d .

Within the approximations discussed near the end the Introduction,
the recommended test satisfies (1.1), and among all tests satisfying (1.1)
with acceptance criterion of form (Z+ks< U-+va,), requires the smallest
N.

The treatment of the other two cases of interest is simply given
in terms of the above.

Suppose, for example, that all parameters except S are given, with
I<d, and that we are trying to ascertain the smallest value of 3, call
it B, that can be achieved by tests of the given type. Consider the
function Nji(vy(B)) obtained by computing N(v,) for different values of
B and fixed values for all test parameters other than N and 8. B, is
then ‘“the’’ (see subsection J at end of paper) solution of

B<1/2

B<L1l—-a
JVB(’UO(B)) =N.
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If no solution exists, no test of type (z+ks<U+wvo,) with 8<1/2,<1—a,
and the given N exists. The search for the solution 3, is much simplified
by the fact that Nz(vy(B)) is essentially decreasing. The test parameters
will be given by :

v=v8,)
k= K.K¥(v(B)+ KBoKik (vo(Bo))
K.+ K,
The case when « is not specified is exactly analogous, except that
the first condition on the value of « is not imposed, so that the equation

determining «, is simply

a<ll—-pA8
N, (v(a))=N.

2.3. The Case g, Unknown

The situation of principal interest again is that for which »,, p,, a,
and B are specified (where, as discussed at the end of the Introduction,
we assume p,<p,<1/2, a+B<1).

If it can be assumed that 0< R<o/d,<R< or 0<R<d/o,<R=o,
then a test with acceptance criterion of type

Tt+ks<U
exists if and only if

K, _ES

K, RS

and the recommended test is given by the acceptance criterion
T4+kes<U

where k,=3,(0)/K and N=max[5, N(0)]. The recommended test has the
property that, within the approximations discussed at the end of the
Introduction, (1.1) is satisfied, and, further, that among all tests of the
form Z+ks<U satisfying (1.1), the given test requires the smallest
N.

The treatment of the other two cases again follows readily from
the above. Suppose for example that K,>0. Then Ng(0) (the function
obtained by computing N(0) for different values of 8 and fixed values
for all test parameters others than N and B) is strictly decreasing in
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B, for B=1/2. Hence, if all test pé.rameters except B are specified,
with K,/K,<RS|RS, then B, the smallest value of 3<1/2 that can be
achieved by tests of the given type, will be obtained by solving

2Kt K+ KKHO) + K KHOT | 1

= 2RMo-KHOF T2
and k, will be given by
e K,K(0)+ K, K*(0)
0= K, + Kﬂo '

2.4. Properties of R and m

Properties of B. We note first the important special case R=oco
may be obtained from the general results by passage to the limit. For
example, in the case ¢, known, the necessary and sufficient condition
for the existence of a solution becomes

l<d.=K,(S—R)
and, when a and B are given,
v,=min(d.., v,)
since, clearly, »=— o <0.
It is also important to note that, since

. K
limd=-="L>1
im i >

R-R m.

solutions will always exist, for values of R sufficiently close to R.
Another observation stems from the development in section I) of
the derivations, and illustrates the fact that N is not in general a
strictly increasing fuction of R in the case o, known. For example,
let R’ be defined as in I), and assume that all parameters of the problem
are fixed, except B and N. Then, if K,R<K,R’, the optimum test and
sample size, i.e., v, k, and N, are the same for all R with either

KR
K,

<R<F

or

K,Jvm<R<K.R|K,
v,2q .
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It follows that, before reluctantly choosing, in the interests of
economy, a dangerously low value for R, the experimenter would do
well to ascertain whether the other test parameters may not be such
that a larger, safer value can be used without the slightest additional
cost,

Determination of m. Consider the problem of deciding how many
measurements to make on each item of the sample taken from the lot.
The value of m can usually be determined on the basis of obtaining
minimum over-all cost for the acceptance inspection. Let p,, p,, a, B be
specified and R and R known. For the criteria of this paper, N will
usually decrease as m increases. Thus, increasing m tends to reduce
the cost from the viewpoint of the number of items in the sample from
the lot. On the other hand, increasing m tends to increase the cost
since the number of measurements is increased. This suggests that the
over-all expense can be minimized by choosing m in a suitable fashion.

Suppose that a function C(N, m) is given which furnishes the over-
all cost of the inspection for given N and m. For the criteria presented
in this paper (and given p,, p, a, 8, R, R), the value of N is determined
by that of m. Hence, the over-all expense can be considered to be a
function of m alone. For the usual practical situation, this cost will
be a monotonically increasing function of m or will have a unique
minimum. This suggests computing total cost for successive integers
until the cost for some M+1 is greater than that for M. Then the
value M is chosen for m. In many cases, M will equal 1.

2.5. Properties of the Test Given by Wallis
The test given by wallis in [2] prescribes the values 0 and
k* Z(KwKz+KSK1)/(Kx+ Kﬂ)

for vo, and k, assuming that there is no measurement error, and that
no bounds are imposed on ¢. Since (v,, k) and (k,) represent optimiza-
tions, it seems of some interest to ascertain whether, for given values
of R and R,

1) (v, k)—(0, k%) as m—oo.
2) ky—k* as m—oo .

It is not hard to verify that 2) holds without exception.
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In the case of 1), it turns out that (v, k,) also tends to (0, k*) in
most cases. The exceptions are as follows: Lot v,.. represent the value
of v, for m infinite. Then, if A>0 and ,.<0, ¥—v,., Which is not
equal to 0. Note that, in the limit, the optimum test depends on R, R
and o, only through Ro, and Ro,, which may simply be thought of as
two bounds, ¢ and G, on . Hence, when bounds are assumed for o,
the test given by Wallis can be improved upon when A>0 and 0.v.. (2
function of Ro, and Ro,, i.e. ¢ and 0)<0.

3. Numerical example

Let us illustrate the construction of an acceptance criterion of the
form developed in this paper for the case o, known, by supposing that
we have given

p,=0.01, p,=0.03, «=0.05, 3=0.10, 0,=1, R=1,
U arbitrary.

Then (by any convenient table of the normal distribution, for example
[2], Table 1.1)

K,=2.32635, K,=1.88079, K,=1.64485, K,=1.28155.

In order to illustrate the savings in sample size that may be accomplished
by assuming a finite value for R or by measuring each item in the
sample more than once, we shall consider six combinations of R and m:

(R9 M)-:(OO, 1), (oo, 2)! (o0, 3), (4, 1), 4,2), (4, 3).

For these six cases the major steps in the calculation of the criterion
are shown in Table 1. In all six cases we verify that I<d; A <0; d<e.
Therefore, for all six cases, a solution exists and v,=d; the value v,
is then used in computing %, and N. The values of N shown in Table
1 should be rounded to the nearest integer (see p. 8), giving sample
sizes of 648, 305, 236, 429, 260, and 214 respectively for the six cases.

The reduction in sample size from 648 to 429, from 305 to 260, or
from 236 to 214, illustrates the saving that can be accomlpished by assuming
a finite value for R. As might be anticipated, this advantage diminishes
as the number of measurements per item increases. The reduction
from 648 through 305 to 236, or from 429 through 260 to 214, illustrates
the saving that can be accomplished by measuring each item more than
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Table 1
Numerical Example
R=o R=4
m=1 m=2 m=3 m=1 m=2 m=3

1 .39011 —.02253 —-.13730 .39011 —.02253 -.13730
d .96360 .52282 .35989 1.31714 .68624 .46527
c 1.52057 .76028 .50686 1.52057 .76028 .50686
K *(vy) 2.3263 2.3263 2.3263 2.5763 2.4598 2.4176
Ky*(v) 2.11327 2.02090 1.98140 2.29613 2.11642 2.04617
ko 2.20658 2.15466 2.13246 2.41884 | 2.26679 2.20883
N 648.3 305.4 235.6 428.6 259.8 213.5

Note : all symbols are explained in subsection 2.1.

once. As discussed in subsection 2.5, if the number of measurements
per item were increased indefinitely, N would tend to the sample size
required for the test given by Wallis [2], p. 28, i.e., N=137.

If testing is nondestructive, so that the items in the sample may
be returned to the lot after inspection, it would perhaps be reasonable
to assume that the over-all cost of inspection is proportlonal to the total
number of meaurements made, i.e., that

C(N, m)=wmN ,

where w is the cost of making a single measurement. Then, in the above
example if R=co, C(N, m) would be minimized by taking m=2; but,
if R=4, C(N, m) would be minimized by taking m=1.

It is also interesting to investigate how much N is increased by
assuming no value for o,. As an illustration, we pick the values (<o, 3)
and (4, 8) for (R, m). We note first that the condition

RS

X<%s
is satisfied in both instances. The values for (K;(0), K¥(0)) are, respectively,
(2.01468, 1.88079) and (2.01468, 1.86150). Hence N equals 1,377 and
1,044, as compared with 236 and 214 for ¢, assumed known and equal

to 1.
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4. Derivations
4.1. Derivation of the Case o, Known

We begin with the situation of primary interest, that corresponding
to given a and B; the solution for the other two situations will then
be seen to follow readily. For clarity, the ensuing development is
divided into several parts.

A) We introduce a coordinate system in the plane, the ‘x-axis”
measuring (¢— U)/o,, the *‘y-axis’’ measuring [(o]o.)*+m™"]". Then,
to any parameter set (¢, g, d,), there corresponds a point, namely

(22U, Wotoy+m=r2),
in the half-plane y=m-"* (which we denote henceforth by P); conversely,
to any point (z, %) in P, there correspond populations (¢, 6) and measure-
ment distributions (¢,) with (¢—U)fo,=z and [(d/c.)’+m ' "*=y. We
next observe that the locus in our (z, ¥) plane of all points corresponding
to populations (g, o) satisfying an inequality of type

U+vo,—{i{gK;“} or v—x{gKf
Vetam <KF)’ y ZKF

is that part {%23} of P which includes all points lying either {
2

}; K*, K¥>0

below }
above

or on the line {%183}, of slope {:K 1::} , passing through the point (v, 0)

wnd {3 SIKE)

We also determine the locus {:l} of all points in P corresponding to
2

populations (f, o) satisfying an inequality of type

Torf2l o =t S{28) Ke K0,

It is readily verified that, for <0, "1l consists of points lying on
7,

or {below

abov e} the upper branch «12;} of the hyperbola {Z;}, h, having center

. . . -1/2 .
(0, 0), major axis 2m~"?, minor axis {gﬁlz—m}’ and equation
2

v x ;s
m'l _—K‘z—’”t—:—l [} (2 1, 2.
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Note that %, becomes slimmer as K, becomes small, ranging from
the lines y=+m™* for K,=_ to part of the line x=0 for K,=0.

The region 7, contains no points with >0, so that it is precisely
the region characterizd above, that bounded by the line y=m " and the
curve b, and for which x<0. On the other hand, 7, in addition to
the region described for <0, further contains all points in P with
r=0.

" Suppose now that we are given two regions in P, r, and r,, of type
described above, determined by two hyperbolas, &, and k, (h, ‘‘slimmer”’
than A,), with common center at (0, 0), common major axis 2m~"%, common
vertical transverse axis, and corresponding to the two hypothes1s regions

Uo 2 =K, and Ua ¢ <K,. Consider pairs of negatively sloped straight

lines, (I,(v), l,(v)), issuing from common points (v, 0) on the x-axis and
determining pairs of regions (R,(v), Ry(v)) in P, of the type described
above, such that:
Condition A: The slope of l,(v) has greater absolute value than that
of 1,(v).

Condition B: R,(v) includes r,.
Condition C: R,(v) includes 7,.

It is not hard to verify that a test (v, k, N) satisfying (1.1), with
acceptance criterion

U+4vo,—Z >k
S =

exists if and only if a line pair (I,(v), l(v)) exists, which satisfies
conditions A, B, and C. As a matter of fact, there is a straightforward
one-to-one correspondence between tests (v, %k, N) of the given type
satisfying (1.1), and line pairs of type (I,(v), l,(v)). This correspondence
is as follows: Let K, K¥ be the negative inverses of the slopes of
l,(v) and Il (v). Then

V=2
K., sias
(4.1 K¥=_"—"2_ k?
D '""VN [2+k
Kr=—Kev 1702 ko
NV IR+

It further follows, therefere, that the search for the best test
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(vo, ko, N,) satisfying (1.1) is equivalent to selecting that line pair
(B(v), ly(v)), with slopes (— K}, —K&™), -frpm among those satisfying
conditions A, B, and C, which in addition satisfies

Condition D :

1 | 2K+ Kp)' + (KK + Ke K

NK%, KX)= ~
(K, K3) 2 2AKEi—KL)

< N(K?¥, K}), (K¥, K¥) corresponding to any
(l,(v), I(v)) satisfying conditions A, B and C.

It is clear, first of all, that no line pair satisfying A, B, and C
exists at all, unless we restrict attention to that part of P given by
y=8 (o/6,=R). Retricting attention to this part of P means that we
require A, B, and C to be satisfied only for those parts of R,, r,, R,, and
r, lying on or above the line y=S. Besides delimiting the problem in
this manner, we may also wish to assume an upper bound Rg, for o,
i.e., restrict attention to that part of P given by S<y<S.

We now investigate in detail the necessary and sufficient conditions
for the existence of at least one line pair satisfying A, B, and C in the
strip S<y<S, and the method of selecting the pair satisfying D, if
pairs satisfying A, B, and C do exist. Let us note, once and for all,
that passage to the limit R=o in the ensuing formulas yields the
important special case in which no upper bound Ro, for ¢ is introduced.
We begin with some definitions :

P, (i=1,2): the intersection point (in the second quadrant) of the
line y=S8 with &,.

Q, (1=1,2): the intersection point (in the second quarant) of the
line y=S with &,.

d : the number such that the lines P,Q, and y=0 intersect at

(d, 0).
q: the number such that the line through (g, 0) and Q, is tangent
to h, at Q,.

p: the number such that the line through (p, 0) and P, is tangent
to h, at P,. :

{%83} the set of all negatively sloped lines passing through (v, 0)

and satisfying condition {g}
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{.5,” 1(11)} : the line in {Ll(v)} whose slope has {smallest} absolute

ZAv)] * L,(v) largest
value.
{%’:g;} : {:i;g:g;}, where S;(v) is the slope of &2 (v).

It is easily verified that d, p, and ¢ are as given by the formulas
of subsection 2.1. We next investigate the nature of <~ ,(v) and &7,(v).

From inspection of the geometric figures involved it is clear that,
for v=d, <7,(v) is the line through (v, 0) and P,, while, for v=d, &~ ,(v)
is the line through (v, 0) and Q,. Further, for v<q, &©,(v) is the line
through (v, 0) and Q,; for ¢<v<p, &,(v) is the line through (v, 0)
which is tangent to the branch b,; and, for v=p, &,(v) is the line
through (v,0) and P,. Computing the expressions for the negative
reciprocals of the slopes of <~,(v) and <2 ,(v), we obtain the formulas
for K¥(v) and Kj(v) of subsection 2.1.

B) We establish now that, assuming
0<R=<0/0,<R<> or 0<R=Zo|o,<R=co,

a test of the required form satisfying (1.1) exists if and only if

(4.24) Y1 (B >0/mIES ER=m™)

or, equivalently,
(4.2B) I<d.

To show this, we recall that a test of required form satisfying (1.1)
exists if and only if a line pair (I,(v), l(v)) exists satisfying conditions
A, B, and C. It is clear that such a pair will exist if and only if
4(v)=K¥(v)— K}(v) >0 for some v.

It is easily verified that either q<p=<d or g<d<p. If

g<p=d
it follows straightforwardly from the definitions that

for v<gq, A(W)=f(v)—fi(v) is increasing
for g<v<p, 4d(w)=f(v)—g,(v) is increasing
for p=<v<sd,  A(w)=f(v)—fAv) is constant

for d<w, A(w)=f(v)—f,(v) is decreasing

(4.3)

and if
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9<d<p

it also follows immediately that

for v=<gq, d(w)=f(v)—fiv) is increasing
4.4) for ¢<v=d, A4d(v)=f(v)—g(v) is increasing

for d<v<p, Jdw)=f(v)—g,(v) is decreasing

for p=w, A(v)=f(v)—f(v) is decreasing.

Suppose now that-g<p=<d; then it is readily checked that 4(v)>0
for any v with p<v=<d, so that 4(v»)>0 for some v.

If, on the other hand, ¢<d<p, then, by (4.4), [4(v)>0 for some
v] if and only if [4(d)>0] or, equivalently, if and only if [[<d], and
it is readily checked that [[<d] may be written in the form given by
(4.2A).

But

LI?_ >1—V(1+mRY1—(K/K.))

1

so that
[p<d] implies [(4.2)].
Hence it follows that 4(v)>0 for some v if and only if (4.2) holds.

C) Next, we establish that N(v) is an increasing function of v for
v=min(d, p), 4(v)>0. This is done by writing N(v) as a function of
K¥(v) and 4(v), which is readily seen to be increasing in K¥(v) and
decreasing in 4(v) for K;=0, 4(v)>0. Since Kj}(v) is an increasing
function of v and 4(v) is a nonincreasing function of v for v=min(d, p)

by A) above, the desired property of N(v) follows.

D) We now examine the behavior of the function

Nl<v)=i+———2K;;(%;(”)

where 4,(v)=f,(v)—fi(v) and 3,(v)=K.f,(v)+K .fi(v), in the region
defined by 4,(v)>0. We note first that this region is given by:

(K.RS—K.RS) _
e =e.

We further show that:
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1) if A>0, then e<w, and

Ni(v)<0 for e<v<w,
Ni(v)=0 for v=wv,
Ni(v)>0 for wv>w,
2) if A<0, Nj(v)<0 for all v>e.
For convenience, we drop the subsecript 1, and note first that

N()=L2Z (S AL

For v>e, 4 and 4’ are greater than 0. Hence,

N@®=0 if j, LSSV _Su_9K= (),

Since ¢, >0 (note that ¢=37-.SS), let X/S'=v—f and note
that 4/4/=v—e. Hence N'=0 for v>e if

K 2

(4.5) 0—Pr—e)=2( Z,) :
But f—e=SSK\MS—S)'¢-'. Hence, for v>e,

if X=O, N’<0-

Further, if A>0, e<f<wv, where v, is the solution of (4.5) with
equality, so that f—e>0 and, for v>e;

N'=0 if v=v,>e

while, if A<0, e>f>v,, so that f—e<0 and N’=0 if v=v,; or, since
e>v,, N<O for all v>e.

E) We next examine the behavior of the function

Nyv)= % 2K*+333(v)

245(v)
where
4,(v)=f1(v)—g,(v)
22:(v) =K.g:v)+ Ks fi(v),

in the region defined by 4,(v)>0, 4)(v)=0. We note first that this
region given by :

p=1 24 >(f}‘e)(l—]/(1+mR’)<1—(—II—§-1’-)2)>El :
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We further show that, for I<v=p, Nj(v)=0 if v=v,, where [<c<v,<p,

1

c , and v, is the unique solution of

[gz(v) +K—B;’;@]tvaIR—Kﬂ =2[g,(v)— Smv]

in the interval (c<v<p).

For convenience, we drop the subseript 2, and note that, since
4(w)>0 for I<v=<p, N'=0 for lI<v=p if 433/ —-[>7+2K*|4'=0, or,
rewriting this condition, if

[£0) - ISE)] 22+ ’;'(’;j;’ —[2.2(@)+2K2][:1§+g’”2%)]§o

or if
K, .
[gz(v)+-fﬂ A(v)][KlRmv — K1)=2[g,(v)— Smv].

Now write this last condition as
F(v)F(v)EFyv) .

Since K, is assumed =0 and K is assumed >0, Fi(v) is nondecreasing
for I<v<p by A). Further, F,(v) is an increasing, and F(v) a decreasing,
function of »v. We notice next that, for I<v=p, F(v) has no root, Fy(v)
has exactly one root (at v=c), and Fi(v) has exacly one root (at v=p).
It follows that F F,-F, is increasing for {<v<p, and is equal to zero
for v=v,, where ¢<v,<p. Hence our assertion concerning the behavior
of Nj.

F) We also need the following :

1) [AZ=0] is equivalent to [¢=q]
2) [A=0] implies [p<d]
3) e<l, except when e=1l=¢q, and [[<q] is equivalent to [e<q].

G) We are now ready to describe the location of the value v,
of v minimizing N(v), in the region given by 4(v)=K}(v)— K} (v)>0,
or 7>v>v, where v=1[ when [>¢q, and v=e¢<q when l<q. The upper
bound ¥ imposes no effective limitation, since, by the argument in B)
and by C), we need look only at v’s less than or equal to min(d, p).
We also recall that N(v)=N,(v) for v=gq, and N(v)=N,(v) for v=q.
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It will be useful to distinguish three parametric situations :

1) x>0.

By D), E), and F), we have: p<d; ¢<gq (hence [<q and v=¢<q);
N{(v)=Z0 for v>e, if v=v,>e<q; Ni(v)=0 for I<v<p, if v=v, where
c<v,< .

Hence, N,(v) may have its unique minimum for v>e at v,, e<v,<q,
or at v,=¢; and N,(v) may have its unique minimum for I<v<p at
v,=q or at v,, ¢<v,<Z0p.

Hence,

if »,<¢ and v,=q, v,=v,
if »,<g and v,>¢q, v,=(v,, v,)
if v,=gq, vo=max(q, v,)

where (,) denotes whichever of the two arguments assigns the smaller
value to N(v).

2) A=0.

By D), E), and F), we have: p<d, ¢=q (hence I<q and v=e<q);
Ni(v)<O0 for all v>e; N)(v)Z0 for I<v<p, if v=v, where g=c<v,<p.

Hence, N,(v) is decreasing for e<v=<gq and N,(v) must have its
unique minimum for I<v=p at v,, ¢<v,<p.

Hence,

Vy=",.

3) a<0.

By D), E), and F), we have: e<l, ¢>q, Ni(v)<0 for all v>e;
N;(v)=0 for I<v<p, if v=v,, where ¢<c<v,<p.

Hence, if e<q, then v=e and Nj(v)<0 for e<v=gq, while, if e>gq,
then I=q and v=I, so that, in either case, v, cannot lie outside [q, p].
Further, N(v)must have its unique minimum for I<v=<p at v,,¢<c<v,<p.

Hence

v,=min(d, v,).

Further, since v,>c¢, if ¢>d, then
v,=d.

H) In summary, then, if it can be assumed that
0<R=Zo0/s,<R<o or 0<R<0/o,<R=o,

a test with acceptance criterion of the form
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r4+-ks<U+wo,
will exist if and only if
I<d.

Further, of all possible tests of this form, the one minimizing N is given
by :

v=12,, ¥, a8 given in G),

L

and will require a sample size of

N(bo) = max[S, % + 2K22;|"2%2)(’Uo) ] .

I) It is worthwhile to note that, for fixed values of the other
parameters, N is not in general a strictly increasing function of R:

1) By G), for =0, v,=wv,; for A<0, v,=min(d, v,), and, for x>0,
v,=max(q, v,), if v,=q.

2) v, does not depend on R, and, also, since

c<v, K)jvym<K.R|K,.

3) d, considered as a function of R, i.e. d(R), is monotone strictly
decreasing in R, with d(R)=K,/mR; also, q(R) is of course strictly
decreasing in R, with

q( K, )='v2 and q(%):c.

VM
Now define R’ by
d(R"=v,
and confine attention to situations for which

KR 5
Ale R
<

2

Then for all R with

K.R
K,

<R<PF

we will hve
1) d>! (since, for all such R, we have: d(R)=d(R")=v,>1)
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so that a test of the required form exists, and
2) v,=v,
Further, for all R with

and

we have :

1) d>1 (since d(R)>d(R’)) and

2) v,=v,.

Hence, in summary, if K,R<K,R’, then for all R with

K.R|K,<R<R' or with K,Jvyym<R<K,R/K, and
V,22q, V,=v,, k=k(v,) and N=N(v,), hence is constant.

J) The solution for the other two possible stuations is simply
given in terms of the above. Suppose, for example, that N and « are
fixed and I<d, and that we are trying to ascertain the smallest value
of 3, call it 3,, that can be achieved by tests of the given type. Consider
the function N,(v(B)) of B, i.e., the function of 8 obtained by computing
N(v,) for different values of 8 and the same fiixed values for all test

parameters other than 8 and N, 3,, if it exists at all, will be the smallest
solution of

B

IIA

1
2

B<Ll—a
N.(v(B))=N .

Note that, as is to be expected, Nu(v,(3)) will be strictly decreasing in
B in almost every case (clearly so, for example, for ranges of 3 for
which v,=d or ¢). Hénce, ‘“ smallest solution’’ may, for practical
purposes, be replaced by ‘solution’’ v and k will be given by

V= '170(/80)
- K.K¥(v(Bo)+ KROK; (v(B) .
B Km + KBO

The solution for a unspecified is analogous.
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4.2. The Case of o, Unknown

The development for the case o, unknown is simpler than and
analogous to that for ¢, known. The reason for restricting attention to
tests (v, k, N) with v=0 lies in the fact that, when o, is not kown, the
correspondence of equations (4.1) is one-to-one for no other values
of v.
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