ON OPTIMUM CHARACTER OF VON NEUMANN’S
MONTE CARLO MODEL*

By HIROTUGU AKAIKE
(Received Feb. 5, 1956)

0. Introduction

In the former paper [1] the author discussed an application of
the Monte Carlo method to the solution of linear simultaneous equations.
The process developed there was a variation of J. von Neumann’s sp-
litting technique. The mean and variance of our estimate and those of
the total number of random digits required for getting an estimate are
given there. In this paper we shall investigate the structure of splitting
technique developed by von Neumann in its original form. As a result
of this it will be seen that the splitting technique has an optimum
character as a practical procedure of estimation.

1. J. von Neumann’s splitting technique.

In the paper by Kahn and Harris [2], splitting technique is desecrib-
ed as follows ;
“ The concentration of neutrons at the point in phase space denoted by
(, a, 7) is given by a function ¢(x, a, y) where « is the position coordi-
nate, « the energy, and y the cosine of the angle with the normal to
the slab. We define a function ¢(x, «, 7) such that ¢z, «, r) is the
probability that a particle (x, «, ) will eventually be transmitted. The
function ¢ represents the importance of the region at (x, @, 7). Finally,
there is a transition function f(x, «, 7; &', a’, ') which measure the rate
at which particles flow from (x, «, 7) to (&', @, ¥'). The splitting tech-
nique, performed in optimum fashion, would be somewhat as follows.
A set of surfaces would be defined by the equations :

(l)((l?, o, T)=2—c ’

where o has values running from one to some integer n. In other

* A part of the results of this paper was announced in October 12, 1955, at the sympo-
sium on the applied mathematics, held by the Japan Physical Society and the Japan
Mathematical Society.
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words, surfaces of constant importance are used rather than surfaces
of fixed values of . Whenever a particle passes from a less important
to a more important region, it is split into two. Each of the resulting
particles is given one-half the weight of the original particle and is
treated independently from then on. When the passage is from the
more important to a less important region, a game of chance is played
in which the particle has a 50-percent chance of being eliminated and
a 50-percent chance of being allowed to survive with double its original
weight. It is easy to see that all the particles that get through will
have the weight 2-" and if N histories are started originally and k par-
ticles get through then an estimate of the probability of transmission
is (E/N)2-"",

Now, for the sake of simplicity, we shall consider here a set of
discrete states running 1 to » and a special state k& representing one of
traps (state of getting through the slab).

Let p,, be the probability that a particle jumps from the i-th to
the j-th state.

Let p, be the probability that a particle starts in the i-th state
(probability of a particle beeing generated at the ¢-th state).

Let ¢, be the probability of eventually getting to the %-th state on
starting from the -th state. Then it is required to get an efficient
estimate of

T= ;_:lpt‘f‘rl'pt .

T represents the probability of transmission of a particle, or a pro-
bability of a particle being generated and eventually trapped in the
k-th state.

To see the optimum character of splitting technique we shall study
first so called variable weight method.

2. Variable weight method.

As our purpose is to estimate T, we may make use of another arti-
ficial Markoff process corresponding to the original one with some de-
sired properties.

Let pf, p¥ be the quantities of our artificial process corresponding
to the original p,;, »,. When a particle is generated at the i-th state
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(with probability pF¥) it is given the weight p,/py, and when a particle
is transmitted from the ¢-th to the j-th state its weight is multiplied
by the factor p;,/pf. We transmit a particle by this artificial process
and get an estimate T, of T which takes as its value the weight of
particle when the particle is eventually trapped at the £-th state and zero
otherwise. To get the mean and variance of T,,,, we consider random
variables X(7k) which represent the weight of a particle which starts
from the i-th state with weight 1 and is trapped eventually at the k-th
state. Assuming the existence of EX(ik), EX'(¢k)(i=1, 2, ---, n), we
get the following formulae ;

EX (k)= 3i03] 2y |EXGH)+ 9] 72 |
h ik

2

EX(ik)= 30t g] X(ak)+p[’;] i=1,2,--- 0

(%] 'tk
or in the matrix notation

(EX(ik))=(I —P) " (pur)=(b:1,{Dix) = ($1)

2k =(1—(| Pu (| Pue
exr-(- (2 ) (2 )
When we denote the variance of X(ik) by D*X(ik) we get
DZX(ik)=§"_‘.pE[£g-]zDZX(,7'k)+ ip [pij:l P2+ D pik] #?
J=1 Dij j=1 i
or

D*X(ik)= Z Dis z” ]D "X(5k) + Zp 4 ([ z:j :]¢J - ¢t)z

k
where > denotes the summation running over j=1,2,...,n» and k.
j=1

The formula can be written in the matrix notation as

@x)=(1-(a] 2 ])" (2ot ¢ Jo= )

As for Tw we have

E()=Fi| B |Exw) +oi| B |=Spgitp=T
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P EX )+ i P |
i i

:

E(T%)— Zp

D(f)= [;i]D’X(ik)+ng‘[ Zg]ﬂpg—r
=§p{ﬁi]D*X“"*ﬂif}p?‘([;’?]@—T)z
(oL 2 ) =(n 22 ) (3 Jome))
+swr(( g 1)

It follows from the last equation that Dz(fw) is equal to zero if and only
if

¢ wm_ T
pZ? ¢ pF h

In practical applications only the values p,;s and p;s are given and we
do not know the exact values of ¢;8, so we take as pjjs and ps estimated

values of pirif~s and p,, g;i-s obtained from the former experience,
i

respectively. In this case the weight factors l)—f;— and pi must be used
Dy Di

throughout the history of a particle and this is a too labourious task to
make this process practicable. However there is a rescue for this default
of the variable weight method in splitting technique.

3. Splitting technique in the purest form.

Corresponding to the ideal variable weight process, the following
splitting process is considered. We trace a history of a particle follow-
ing the original p;s and p,;s, but when the particle is generated at the ¢-th
T

i
when a particle is transmitted from the ¢-th to the j-th state we split

state we split it into 7; independent particles each with weight and

it into 7, independent particles each with weight multiplied by the fact-
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or b , where 7, and r; are random variables independent of any other
J

¢

f , E'r“=% and variances o, oj; res-
13

variables and with means Er,=

pectively. We take as our estimate of T' the total weight T of des-
cendants, of a particle, trapped at the k-th state. It is obvious that in
this case every decsendant trapped at the k-th state has a weight equal
to T. We shall observe the mean and variance of T,. We denote by
X(ik) the random variable which represents the total number of des-
cendants eventually trapped at the k-th state starting from a particle
at the ¢-th state. Assuming the existence of EX(ik) and EX*(tk) we
obtain the following formulae :

EX(ik)= gpu%EXUk)+Pm ; -

(1
k i) . 2

EX(il) = 3 poB( 5 X(H) (@)

= Z puf'(?‘uE'X’(Jk) + 7, (r,;,— 1)E*X(5k))

J=1 ”
=S i, & EX() - 3., &1 B2 X(GE)
Jj=1 ¢i ‘ J=1 d’i
+ jﬁ 2o E)EXGE) -

From the first formula we have

(EX(H)= (1= (pi, 2* o ))"(%;f-)
=(§r00)(50)- (5, Bpery)
=(Tﬁl‘*:2{¢szuc).=(1) .
For the variance D*X(i¢k) of X(ik) we have

D X(ik)= Ep‘, Y D’X(ak)+2p“E(m) -1

_ n _?J " . k 2 k EL._l 2
w8 DX+ St So( % -1)
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(DX (i) —(1 (p“%:l—)) (EpuBr-1y) .
As for T, we have

Ef,=3p, lE( éX(ik)(wQ)

—Zp,E(nEX(zk» Spde—1
BT =3 B( 3, XG0k w,) )

- Zp,E(nEX’(zk) + BEX(ik) —r B X(ik))

- 45_;1 p,%EX’(ik) - ?.:1 pt%E’X(ik) + fo, pE(r})E*X(ik)
Dt =5 2 DX i)+ SpE(r)~1

=35 2 prx(ik)+ 3 pot+ 3yp B - 1)

i=1

=("’5?‘)'( (o)) (ot 2l -1))

+ ZmaﬁZm(—@;—l)

i=1

Thus it can be seen from the last formula, that even in this ideal case
the splitting technique introduces a positive variance except for the
trivial case of ¢,=T and o};=45i=0 for all 4s and js.

4. Splitting technique in the general form.

In this section we shall treat the splitting technique in its general
form.

Let us denote by pf and pjj the estimated values of p, 2 ¢‘ and p,, if
13

respectively.

We trace a history of a particle following the original »s and
DS, but when a particle of weight unity is generated at the i-th state
it is split into 7; independent particles with weight p,/p}, and when
a particle is transmitted from the ¢-th state to the j-th state it is
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split into »,, independent particles each with its weight multiplied

by the factor p—ﬁj—, where 7, and 7,, are random variables which are in-
Dy

K *
dependent of any other variables and with means Er,= P, Er, ,=ﬁ and
4 Dy

variances o;, oi; respectively. Thus we get a splitting process correspond-
ing to the variable weight process with pis and p}s. In this case our
estimate Ts of T is given by the total weight of descendants eventually
trapped at the k-th state from a particle generated at some state.

Let us denote by X(ik) the total weight of descendents trapped
eventually at the k-th state from a particle starting from the 4-th state
with weight unity. Then we get the following formulae;

BXk)=Sipu] 2 (3 X000

=j§puEX(jk) + Dix
or

(EX@EE)=I—(pi) (0ix)=($:) ,

I R )

30 j[ ;’;“ ] ([ ¥ ]D”X(jk) + E(ri,)E'zX(jlc))

j=1 Dy

+pu 2 [B0)

Dix

DXk S0 2 | DX )+ S| 24 [Blrig-

or

@) =(1~(po| 22])) (o] 22 [EC15-1)

pij

As for Ts we have

Bt Syo[ 22 B3 X))
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=S B J([ 2 Joxn - mows) + m] P T
=Sin 2 X+ Sinl 2 B,
)

ody=(of 2 J(1-(nf 22 )" (5o 22 TE0t05-01)
(S 2 JEeDe-T),

ip“[%f:‘:rE(ﬂj)‘ﬁj ¢>;=Zp¢ I:-v~] a; +|: 2

ij

k 2 k
=2p“[£$]afj¢§+2pu(¢j—¢i)2
J=1 pij J=1

ol Teoosr-gal 2 (5 Ty

k 2 k
=S P Jotgt+ ST
i=1 o i=1

5. Existence of a variable weight process corresponding to a splitt-

ing process.

For a splitting process defined by p;s, p; s, 7:s and r, ;8 with E(r)=gp,,
E(r,;)=p,; where

Zz: D <1 57‘. Disttsy <1
¢, >0 for p, >0 #45>0 for p;, >0

hold, we have a variable weight process which, as is easily seen, gives
this splitting process as its corresponding model and is defined by

pi=pp; for p,>0 pf=p,p; for p,>0,
ve=1-3\p;p; Diw=1-3,p,,p, for some trap k' other than %
i Jj



ON OPTIMUM CHARACTER 191

and
pr =0 =0 otherwise.

Thus it can be seen that in practical problems with p,. sufficiently
large any splitting process may be considered to be a substitute for
some variable weight process.

When we denote by D’(Ts)and D”(Tw), variances of estimates for T
by splitting process and by its corresponding variable weight process,
we have

2w, s)=D"T,)-D(T.,)

~ (oY A=) B~ Eo)wosni’ )

k
+(S B -Erypssr)

=1
This formula suggests that in practical cases we should take r;;s
as follows: for 7,8 with E(r,,)<1 we had better take such 7;;s that

Prob (r;,=1)=p;; Prob(r,;=0)=1—p,,,
then we should have
E(r})—E(r,;)=0,

and for r,s with E(r;;)>1
we have

E(ri) —E(r ) =D(r.;)+ E*(r) — E(r))
so we had better take such r;;s that
Prob (r,;=[p;] or [m#,]+1)=1.

When we follow the above suggestion, it becomes desirable to take
integral ;s for p;,>>1 and to take r,,=g;, in practical splitting proce-
dures.

6. Number of random digits required to get one particle history.

By W, .(3), W, .(3) we shall represent the total numbers of random
digits required for getting the m-th generation of a particle started
from the ¢-th state following the variable weight process and the split-
ting process respectively.
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It can easily be seen that

EWw,m(i)=1 + jz_‘alptjﬂilEWw.m—l(j)

EW,n(6)=1+ 3 00t,EWsnoi(d) -
In the matrix notation we have
EWon(@)=(EW; n(i))=e+ Distti NE Wy m-(2))
=e+ (Dista NEW s (7))
=+ @isttss)+ -+« + (Disp)" e

where e=(1---1)’. Under the condition
Ej‘.pum,<1 1=1,2,---n

we have
(BEW oy m(@)=(E W, n(3)) < (I —(Disp15)) e

therefore there exist random variables W,(:) and W,(?) (¢:=1, 2, -+, n)
such that [3]

Wom(t) > Wu(?)
W, m(i) > W) .
For W, and W, we have
(D* W o(0))= (L = (D1 3£245)) " (2D s NE W (D)) + (Dustt2) — INE* W o (2)) + €)
(D*W (@)=~ (D1t1) 201310 N E W () + (175 — IE* W(3)) +€)

where r5,=E(r}) and e=(1, 1, ---, 1).

(with probability 1 as m — )

7. Multiplicative splitting process.

When we have a splitting process defined by p;s, s, 78 and 7,8
with E(r,)=p¢s and E(r;;)=p;,s, we shall call it a multiplicative splitting
process if pp,,=p,, ppn=p, hold for 4,5, h =@, 2, -+ n, k).

For a multiplicative splitting process, we have only to count the
total number of particles trapped at the k-th state and we have no need
to worry about the weight of each particle, as each particle has one
and the same weight ;' when it is trapped at the k-th state.

This simple structure of multiplicative system makes splitting pro-
cess practicable. Taking into account of W(i)s, the existence of X(ik),
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EX(:k) and EX?(ik) is clear, although their existence has been assumed
in the previous sections, for multiplicative splitting process and its cor-
responding variable weight process with g, ,s satisfying the following
conditions [3]

Zj:pul‘u<1§ ;b'=1, 20 ,m.

When we denote by X,(ik) and X,(ik) the total number of particles
trapped at the %-th state from a particle started from the i-th state
following the splitting process and the corresponding variable weight
process respectively, we have

(EX, (k) =T —(Dit5) " (Dittar) =(¢7)
(EX,(tk))=(oi)

(DX i) =T~ Do) Epotet? —91°)

(DX ()=~ o) (o —91")

where 7},=E(r}).

Now it can be seen that von Neumann’s splitting technique has all the
desirable properties stated in sections 5 and 7 and thus may be consider-
ed to have an optimum character from the practical standpoint.
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