On the Convergence of Classes of Distributions
By Kinsaku TArANo

Introduction. ITet Fi(z), Fy,(z) bo two one-demensional d. f. ’s
(distribution functions). If there are a positive number ¢ and a real number
b such that '

Fy(x) = Fi(ax + D), (— o0 <2z < o),

then, Fi(z) and Fy(z) arc said to belong to the same class. Let K, K,
K, ... be a sequence of classes of d.f.’s. If we can choose d.f.’s F, F,,
F,-.....from the classes K, K, K- respectively, such that { F,(z); n
=1, 2, ...} converges to Fy(x) in every continuity point of Fy(x), it is
said that the sequence of classes of K, K, .... converges to the class K.
A. I Khinchine proved that if a given sequence of classes K, K, ........
converges to a proper class, the limiting proper class is unique [2]. The
main purpose of this mnote is to give a new simple proof to this fact by
using the inverse functions of the d.f.’s. The principle of our proof seems
very natural. The second is to give some expositions on the inverse func-
tions of the d.f.’s.

§ 1. The inverse functions of the d.f.’s. Let F(z) bea d.f, that is

(i) F(x) is a non-decreasing function defined in the whole interval
—oo & < oo,

(ii) lim F(z) =0, . lim F(x) =1

25moo —

(iii) F(z) is continuous to the left: F(x) = F(z—0), —o0 <z < oo.
Define f(y) as follows,

S(0) = —oo,

fly) = minfz; Fx +0) 2y}, (i 0<y<1),

F1) = sup o F(o) <13,

If there exist finite # such that F(x) =1, we have

S(1) = min {z; F(z + 0) =1} =inf {2 ; F(z) = 1}.
It is seen that

(i) f(y) is non-decreasing,

(ii) f(y) is continuous to the left in the open interval 0 <y < 1;
that is, f(y) is finite and f(y) =f(y—0) in A <y <1,

(iii) f(1) =f(1-0),
Proof. (i) : evident. (ii): It is sufficient to prove that f(y) < f(y—0).
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For any positive number € such that 0 <& <y, we have, by the definition
of f(y—e):
y—e<F(f(y — &) +0) = F(f(y —0) +0).
as € may be chosen arbitrarily small, we have y < F(f(y — 0) + 0), hence
Jy) =<f(y — 0). (iii): Case when F(z) =1 for some 2. It is the same
as with (ii). Case when F(z) <1 for all z. Given any number K, if
F(K +0) <y <1, then F(K+0) <y=(f(y) +0), hence f(y) > K.
Therefore we have f(1 — 0) = oo = f(1).
We call f(y) the inverse function of the F(z).
From the definition of f(y), it is seen that
(A) F(f(y) +0) =9,
(B) F(z+0)=zy—22=f(y)
~P—— Q means that if P then @,

Lemma 1.
(B') = <f(y) — F(x + 0) <y,
{C) s=f(y) — F(z+0) =y,

(D) z2>f(y+0) — F(z) >,

(E) 2=f(y +0) — F(z) <,

(E) y <F(z) —f(y + 0) <z,

(D) y=F(z) —f(y + 0) ==,

(C) y> F(z +0) —f(y) > =,

(B) y=F(z+0)—f(y) ==

Proof. (C): F(z+0)=F(f(y) +0) =y. (D): If 2> f(y + 0), we
can choose y > y such that z > f(y). F(z) ZF(f(y) +0) =y > v.
(E): If 2 <f(y + 0), for any € > 0, we have z — &€ < f(y + €). Using
(B'), F(x —€) <y + & Since € may be arbitrarily small, we have
F(z—-0) <y (B), (¢), (D), (E') are contrapositions of (B), (¢), (D),
(E) respectively.

From (E) and (D’) we have the following

Theorem 1. A d.f. F(x) i uniquely determined by its inverse function
f(y). Move cxplicitly,

F(z) =min{y; f(y + 0) =2, 0 <y <1} ,

From (D’), (B), (C) and (E) we have the following

Lemma 2. F(x —0) <y<F(z+0)==f(y—0)<z=fly +0).
P=—_@Q means that if P then Q and conversely.

From (D), (E'), (C), (B’) and simple conciderations we have the
following ' :
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Lemma 3. F(z) <y < F(x;) — 2, < f(y) < 2,
flyp) <z <f(y) — = F(z) < 9

By the graph T'y of F(z), we mean the set

{2, 9); Flo—0) Sy=F(s +0), — oo <2 < oo}
and by the graph T, of f(y), the set

{(& 9): fly—0) Sz =f(y +0), — 0 <z <oo, 0<y=<1i,
These graphs are easily proved to be a continuous curve, by the rotation
of the co-ordinate axes. From Lemma 2, it is seen that the graph I'y of

a d.f. F(x) and the graph I', of its inverse function f(y) are coincident.
From Lemma 2, we have

S —0)=min {z; F(z —0) sy<F(z + 0)}, (0 <y <1),
fy+0) =max{z; F(z—0) sy=F(z +0)}, (0<y<1), )
F(z —0) = min {y; fiy — 0) <z < f(y + 0)}, '
F(z +0) =max{y; f(y —0) =z <fly +0)},
Hence, if f(p — 0) <&, < f(p + 0), where 0 < p <1, then &, is the quantile
of order p of the d.f. F(x), and conversely.
By the simple considerations, from (1), it is seen that

S(y—0) =min {z; F(e +0) 2y}, (0<y<1),
Sy +0) =max {z; F(z—0) <y}, (0<y<1), (2)
F(z ~0) = min {y; f(y + 0) = 2},
F(z +0) = max {y; f(y — 0) <=},
Therefore, we have the following
Lemma 4. (i) Given any y, such that 0 < y, < 1, write z, = f(y, — 0)
and 2; = f(yo + 0). Then, for any positive €, we have F(z, — &) <y, <
F(x, + €). (il) Given any real number z, write y, = F(x, — 0) and
Y2 = F (x4 0). Then, for any positive &, we have f(y, — €) <y <f(y. + €).
Theovem 2. If we write f(y) the inverse function of a d.f. F(x), then
the inverse function of F(ax + b), where a > 0, is equal to {f(y) — b}/a.
Proof. Write F\(z) = F(ax + b), then

E(ﬂ% +0)=F(f(y) +0) 2.

Hence,

Ay ==L, | ®)
where f,(y) denotes the inverse function of Fy(z). .
As

Flafily) + b+ 0) = B(fi(y) + 0) =,
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we have ‘ : ,
S() = afi(y) + b (4)

From (3) and (4), we have

fi) = L) =0,

Theorem 3. Let {F,(z); n=0,1,2, ... . } be a sequence of d.f’s, and

$fa(y)} the corresponding sequence of inverse functions. A necessary and
- sufficient condition for the convergence of {F,(z); n=1, 2, ... . } to Fy(z),
in_every continwity point of the latter, is that {f,(y) ; n=1,2, ..... { converges
to fi(y) in every continuity point of the latter.

The necessity is known. We can find it, for example, in [3], without
proof. The sufficiency is probably known. We will give a proof for the
completeness. ,

Proof. To prove the necessity, suppose that {F,,(z)} converges to F,(x)
in every continuity point of Fy(z), and that 0 <y, < 1. Write

z, = fo(y — 0), z, = fo(yo + 0).
Given any positive &, using Lemma 4, we have
Fo(z, — &) <y < Fy(zy + &)
Let z, — € and =, + € be continuity points of F,(z), then by the assump-
tion, {F,(z, — €)} and {F, (%, + €)} converge to Fy(z, — &) and Fy(x, + &)
respectively.
Hence, we can choose N such that
Fo(z, — &) <y < F,(x, + €)
for all w > N. From Lemma 3, we have ‘
& — E<fulp) <2+ & a< N

Since € may be chosen arbitrarily small, {f.(y)} converges to f,(v.),
assuming that y, is a continuity point of f,(y).

Similarly, we can prove tne sufficiency.

It is seen that the convergence at a point of the sequence of the inverse
functions is a local property of the sequence of d.f.’s. That is:

Corollary 1. Let b be a continuity point of f(y) and a =f(b). In
order that {f,(b)} converges to f,(b), it is sufficient that there exists a positive
number & such that if a — & < x < a + & and if x i continuity point of
Fy(x), then F,(x) converges to Fy(x).

Corollary 2. Let F,(x) be a sequence of d.f.’s, let p be a given number
such that 0 < p < 1, and let &, be any quantile of ovder p of F.(z) for each
n. If {F,(x)} converges to Fy(x) in every continuity point of Fy(x), then
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{E.} 1s bounded and its any accumulating value is a quantile of order p of
Fy(z). In particular, if the quantile of ovder p of Fy(x) is fumquely deter-
mined then hm E, =E&,.

We can ﬁnd the Slutsky’s proof of Corollany 2 for the case when
p-——m [4], Chapt. VI, §43.

Usmg, the P. Lévy’s metrization for the convergence in law, the The-
orem 3 is the concequence of the following three Lemmas.

Lemma 5. A necessary and sufficient condition for the convergence of
{F,(x)} to Fy(x), at every continuity point of the lattev, is that for any positive
number & we can choose N = N(&) such that

Pz —&) — 6Py (2) SFy(s+6) +& (—co<w<oo) ()
Jor all n = N. (cf. P. Lévy [4], Chapt. III, §17.)

Lemma 6. A necessary and sufficient condition for the convergence of
a(¥)} to fo(y), at every continuity point of the latter, is that for any posi-
tive number &, we can choose N = N(€) such that |

flly =€) —e<fy) =fiy+ 6 +¢& (0=y=<1) (6)
for all n = N, assuming that :

.ﬁ)(y) =+ oo, if y> 1,

— oo, of y <0.

In (6), (0 <y=<1) can be replaced by (0 < y < 1). ‘

Lemma 7. Let F(x), G(x) be d.f.’s and f(y), g(y) be the corvespond-
ing inverse functions, then the following two conditions (7) and (8) ave
equivalent :

F(o—8) —6<@a) SF(z+8) +6 (—eo<a<co),  (T)
hf(y—8)~ﬁ<y(1/)<f(1/+8)+€ 0=y=<1), (8)
wnere
fy) =+ o0, dify>1,

— ©9, qu<0’

Proof of Lemma 7. As the function F(z), G(z), f(y) and g¢(y) are
all everywhere continuous to the left, (7) and (8) are equivalent to, the
following (7') and (8'), respectively :

F(z—&—0) — €<G(z—0) < G(x+0) < Fz + & +0) +§,

(= o0 <z <o), (7')
fy—€-0)—E=<g(y—0)=g(y +0) =fly +€+0) +&
(O=y=1), (8')

(7) ((8)) is equivalent to the condition that the graph I'c (T',) of G'(z)
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(9(y)) lies between two curves obtained by translating the graph I'y (T',)
of F(z) (f(y)) in the direction of the straight line # + y = 0 by +/2¢.
Since I'y =T, and 'y =T, (7') and (8') are equivalent.

§ 2. The convergence of classes of d.f.’s. Iet F(z) be a d.f. A
point  such that F(x + &) — F(z — &) > 0 for all &> 0, is called a in-
creasing point of F(x). If I'(x) has at least two increasing points, then
F(z) is called to be proper, and otherwise, unproper. Tt is easily seen that
denoting f(y) the inverse function of F(z), f(y) is constant or mnot in
0 <y <1, according as F'(z) is unproper or proper.

Now, we write the uniqueness theorem of the limiting proper class of
a sequence of classes of d.f.’s, in the following form.

Theorem 4. Let {F,(z); n=1,2, .. . { bea sequence of d.f.s. Assume
that there exwist sequences of positive numbers {a,}, {a,}, and sequences of real
numbers {b,}, {Ba} ; and that theve exist proper d.f’s ®(z), ¥(x) such that
C lmFy(ae +0,) = @), (a,>0), | ()

N-doo
lim F, (@ + B,) = ¥(z), (a,>0), (10)
t—>ea .

at every .continuity point of ®(x) or W(z), respectively. Then there exist the
limats
lim % = A4 > 0, lim#Be—bs . g (11)
e (1, n->o0 a,, .
and for all x .
V(z) =®(Ax + B), (12)
That is, ®(x) and ®(x) belong to the same clase. '

Proof. Let f.(v), @(y), ¥(y) be the inverse functions of the d.f.’s
F,(z), ®(x), ¥(x) respectively. From Theorem 2, the inverse functions
of F.(a.x + b,), F(a,x + B,) are given by { f.(y) — b.}/an, $f.(y) —B.}/a.
respectively. From (9), (10), using Theorem 3, we have

lim gfn(y) = b}/a. = ¢.(?/), (13)

lim {£.(y) — Bu}/an = ¥(y), (14)
at every continuity point of @(y) or ¥ (y), respectively. By the assumpt-
ion, ®(x), ¥(x) are proper d.f.’s, therefore, neither @(y) nor ¥(y) is
constant. We may find ¥, y, such that 1>y, > 4, > 0, @(y,) > @(v,),
¥ (%) > ¥ () ; and that y, ¥, are both common continuity points of @(y)
and y(y). For y =y, ¥, we have (13) and (14). By making differences,
we have

m {f. () — fulte) Y an = () — @lu2) > 0,
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and ‘
im {f(y,) — fa(ya) {/ta = ¥ (1) — ¥ (%) > 0.
By concidering the ratio, we have
lim & — ?(y) — P(y) (_ A 0. 15
T ) — ey A 1
From (14) and (15), we have

limJ2(¥) — B _ A¥(y). (186)

n

By making (13) — (16), we have
lim B = bu — 4(y) — Ay (y) (= B say).

The last is true for any y which is comman continuity point of @(y) and
Y¥(y). Since @(y) and ¥ (y) are both continuous to the left, wo have for
all ¥ in 0 <y <1,

P(y) — A¥(y) = B.

v =28 =5, 0<y<).

Thus ¥(z) and ®(Az+B) have the same inverse function. By Theorem
1, we have (12).
Corvollary 1. Assume that
lim F, (a2 + 0,) = ®(w), (a, > 0)
and
lim F(a,s + B.) = ®(=), (a, > 0),
in every continuity point of ®(x); and that ®(x) is a proper d.f. Then
we have
lim % - 1, limBr=bs ¢
ay @,
(¢f. [1])
Proof. From the above theorem, we have
®(z) = P(4z + B), (- oo <z <o),
where A and B are defined by (11). Using Theorem 2, we have

ey) = (e(y) — B)/4, (0<y <),
where @(y) denotes the inverse function of ®(x). Since ®{x) is proper,
@(y) may assume at least two different values, therefore,
A=1, B=0.
Corollary 2. Assume that
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lim F, (a2 + b,) = ®(z), (a.>0)
and '
lim F(a,z + B,) = ¥(x), (a, > 0),
at every continuity point of ®(z) and ¥(z), respectively, and assume that
D (x) is unproper and W(x) is proper. Then there exist the limits

lim % =0, limBe =0 _ g
ali ali
and B
0, x < B,
®(z) = 17
() {1, e (17)

Note that (12) and (17) may be rewritten in the following same expression

v = lne ()

Corollary 3. Assume that
lim F,(a,x + b,) = ®(x), (a, > 0),

at every continuity point of ®(x) and that there exist the limits

im% — A4 (a,>0), limB=0 _p

nde (@, a,
where {a,}, {b.}, {a.}, {b.} are sequences of constants. (It is @'hdiﬁe?'ent that
®(z) is proper or not). If A >0, then

lim F,(a,x + B,) = ®(Az + B).
If A =0, then '
P(B-0) < lir{}_}igf]"f,,(anw +8.) = lin;ésgp F,(ax+ B, <P(B+0).

Proof. (Case when A > 0.

3 fn(y) — Bn 1 fn(:l/) _ bn . Bn _ bnA &s — ¢’(?/) _ B
Him = a, _hm( @, , )/ a, 4

By Theorem 3, we have the desired result.

yase when A = 0. It is clear from the following fact. Let b be any
number such that 0 < b < 1. If for all ¥ > b, lim f,(y) =+ oo, then we
have lim sup F,(z) < b for any «. Ifforall y < b, limf,(y) = — oo, then
we have lim inf F,(#) = b for any z.
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