

Pointwise convergence in probability of general smoothing splines

Matthew Thorpe¹ · Adam M. Johansen²

Received: 19 January 2016 / Revised: 8 December 2016 / Published online: 4 April 2017 © The Institute of Statistical Mathematics, Tokyo 2017

Abstract Establishing the convergence of splines can be cast as a variational problem which is amenable to a Γ -convergence approach. We consider the case in which the regularization coefficient scales with the number of observations, n, as $\lambda_n = n^{-p}$. Using standard theorems from the Γ -convergence literature, we prove that the general spline model is consistent in that estimators converge in a sense slightly weaker than weak convergence in probability for $p \leq \frac{1}{2}$. Without further assumptions, we show this rate is sharp. This differs from rates for strong convergence using Hilbert scales where one can often choose $p > \frac{1}{2}$.

Keywords Variational methods $\cdot \Gamma$ -convergence \cdot Pointwise convergence \cdot General spline model \cdot Nonparametric smoothing

Matthew Thorpe mthorpe@andrew.cmu.edu

¹ Department of Mathematics, Carnegie Mellon University, Pittsburgh, PA 15213, USA

² Department of Statistics, University of Warwick, Coventry CV4 7AL, UK