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Abstract Sample quantiles are consistent estimators for the true quantile and satisfy
central limit theorems (CLTs) if the underlying distribution is continuous. If the distri-
bution is discrete, the situation ismuchmore delicate. In this case, sample quantiles are
known to be not even consistent in general for the population quantiles. In amotivating
example, we show that Efron’s bootstrap does not consistently mimic the distribution
of sample quantiles even in the discrete independent and identically distributed (i.i.d.)
data case. To overcome this bootstrap inconsistency, we provide two different and
complementing strategies. In the first part of this paper, we prove thatm-out-of-n-type
bootstraps do consistently mimic the distribution of sample quantiles in the discrete
data case. As the corresponding bootstrap confidence intervals tend to be conservative
due to the discreteness of the true distribution, we propose randomization techniques
to construct bootstrap confidence sets of asymptotically correct size. In the second
part, we consider a continuous modification of the cumulative distribution function
and make use of mid-quantiles studied in Ma et al. (Ann Inst Stat Math 63:227–243,
2011). Contrary to ordinary quantiles and due to continuity, mid-quantiles lose their
discrete nature and can be estimated consistently. Moreover, Ma et al. (Ann Inst Stat
Math 63:227–243, 2011) proved (non-)central limit theorems for i.i.d. data, which
we generalize to the time series case. However, as the mid-quantile function fails to
be differentiable, classical i.i.d. or block bootstrap methods do not lead to completely
satisfactory results andm-out-of-n variants are required here as well. The finite sample

C. Jentsch (B)
Department of Economics, University of Mannheim, L7, 3-5, 68131 Mannheim, Germany
e-mail: cjentsch@mail.uni-mannheim.de

A. Leucht
Institut für Mathematische Stochastik, Technische Universität Braunschweig, Pockelsstraße 14,
38106 Braunschweig, Germany
e-mail: a.leucht@tu-braunschweig.de

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10463-015-0503-3&domain=pdf


492 C. Jentsch, A. Leucht

performances of both approaches are illustrated in a simulation study by comparing
coverage rates of bootstrap confidence intervals.

Keywords Bootstrap inconsistency · Count processes · Mid-distribution function ·
m-Out-of-n bootstrap · Integer-valued processes

1 Introduction

Since the seminal work of Efron (1979), bootstrapping has been established as a major
tool for estimating unknown finite sample distributions of general statistics. Among
others, this method has successfully been applied to construct confidence intervals
for sample quantiles of continuous distributions; see e.g. Serfling (2002, Chapter 2.6),
Sun and Lahiri (2006) and Sharipov and Wendler (2013) and references therein. In
this case, the asymptotic behavior of quantile estimators is well understood. Based
on the well-known Bahadur representation, a CLT can then be established for sample
quantiles in case of an underlying distribution exhibiting a differentiable cumulative
distribution function (cdf) and a positive density at the quantile level of interest. This
allows for the application of classical results on the bootstrap to mimic the unknown
finite sample distribution.

Quantile estimation has many practical applications for discrete-valued data, too.
For instance, Chen and Lazar (2010) use it to analyze epileptic seizure count data.
Moreover, it plays a central role in survey analysis, e.g. to report the median age at first
marriage or the median customer satisfaction, where the latter is typically categorical
data. For an overview of results on bootstrapping sample quantiles in the context of
survey data, we refer to Shao andChen (1998). However, the results obtained there rely
on certain smoothness assumptions on the underlying distribution, which do generally
not hold true for discrete data. In supply chain management, especially for sporadic
demand, quantile estimation is required to develop inventory policies that lead to a
prescribed α-service level in the sense of Tempelmeier (2000, Sect. 2.1). Confidence
intervals can then be used to determine the uncertainty of these estimates.

However, if the underlying distribution is discrete, this task is much more delicate
than in the continuous case. Sample quantiles may not even be consistent in general
for the population quantiles in this case. This issue occurs due to the fact that the cdf
is a step function. This leads to inconsistency if the level of the quantile of interest
lies in the image of the cdf and, consequently, CLTs do not hold true anymore. Before
we illustrate this inconsistency with the help of a simple, but very insightful toy
example below, first, we fix some notation that is used throughout this paper. Let Qp

for p ∈ (0, 1) be the usual population p-quantile of a probability distribution with cdf
F defined via its generalized inverse, i.e.

Qp = F−1(p) = inf
t

{t : F(t) ≥ p} . (1)

With observations X1, . . . , Xn at hand, the sample p-quantile ̂Qp is defined as the
empirical counterpart to (1), that is,
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