

Change-point model selection via AIC

Yoshiyuki Ninomiya

Received: 21 April 2013 / Revised: 21 June 2014 / Published online: 24 August 2014 © The Institute of Statistical Mathematics, Tokyo 2014

Abstract Change-point problems have been studied for a long time not only because they are needed in various fields but also because change-point models contain an irregularity that requires an alternative to conventional asymptotic theory. The purpose of this study is to derive the AIC for such change-point models. The penalty term of the AIC is twice the asymptotic bias of the maximum log-likelihood, whereas it is twice the number of parameters, $2p_0$, in regular models. In change-point models, it is not twice the number of parameters, $2m + 2p_m$, because of their irregularity, where m and p_m are the numbers of the change-points and the other parameters, respectively. In this study, the asymptotic bias is shown to become $6m + 2p_m$, which is simple enough to conduct an easy change-point model selection. Moreover, the validity of the AIC is demonstrated using simulation studies.

Keywords Brownian motion \cdot Functional central limit theorem \cdot Information criterion \cdot Irregularity \cdot Random walk \cdot Structural change