

Smooth change point estimation in regression models with random design

Maik Döring · Uwe Jensen

Received: 4 June 2013 / Revised: 21 December 2013 / Published online: 18 May 2014 © The Institute of Statistical Mathematics, Tokyo 2014

Abstract We consider the problem of estimating the location of a change point θ_0 in a regression model. Most change point models studied so far were based on regression functions with a jump. However, we focus on regression functions, which are continuous at θ_0 . The degree of smoothness q_0 has to be estimated as well. We investigate the consistency with increasing sample size *n* of the least squares estimates $(\hat{\theta}_n, \hat{q}_n)$ of (θ_0, q_0) . It turns out that the rates of convergence of $\hat{\theta}_n$ depend on q_0 : for q_0 greater than 1/2 we have a rate of \sqrt{n} and the asymptotic normality property; for q_0 less than 1/2 the rate is $n^{1/(2q_0+1)}$ and the change point estimator converges to a maximizer of a Gaussian process; for q_0 equal to 1/2 the rate is $\sqrt{n \cdot \ln(n)}$. Interestingly, in the last case the limiting distribution is also normal.

Keywords Regression · Change points · M-estimates · Rate of consistency · Asymptotic distribution