Estimation of the error density in a semiparametric transformation model

Benjamin Colling · Cédric Heuchenne · Rawane Samb · Ingrid Van Keilegom

Received: 17 October 2011 / Revised: 30 April 2013 / Published online: 3 January 2014 © The Institute of Statistical Mathematics, Tokyo 2013

Abstract Consider the semiparametric transformation model $\Lambda_{\theta_o}(Y) = m(X) + \varepsilon$, where θ_o is an unknown finite dimensional parameter, the functions Λ_{θ_o} and *m* are smooth, ε is independent of *X*, and $\mathbb{E}(\varepsilon) = 0$. We propose a kernel-type estimator of the density of the error ε , and prove its asymptotic normality. The estimated errors, which lie at the basis of this estimator, are obtained from a profile likelihood estimator of θ_o and a nonparametric kernel estimator of *m*. The practical performance of the proposed density estimator is evaluated in a simulation study.