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Abstract It is a known fact that some estimators of smooth distribution functions
can outperform the empirical distribution function in terms of asymptotic (integrated)
mean-squared error. In this paper, we show that this is also true of Bernstein polynomial
estimators of distribution functions associated with densities that are supported on a
closed interval. Specifically, we introduce a higher order expansion for the asymptotic
(integrated) mean-squared error of Bernstein estimators of distribution functions and
examine the relative deficiency of the empirical distribution function with respect to
these estimators. Finally, we also establish the (pointwise) asymptotic normality of
these estimators and show that they have highly advantageous boundary properties,
including the absence of boundary bias.
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1 Introduction

Let X1, X2, . . . be a sequence of i.i.d. random variables having a common unknown
distribution function F with associated density f supported on a closed interval. With-
out loss of generality, we take that interval to be [0, 1]. Now, when F is known to be
continuous, it is natural to consider the estimation of F by using smooth functions
rather then the empirical distribution function, which is not continuous. One way of
doing this, in the case where f is supported on the unit interval, is to make use of
the famous Bernstein polynomial approximations. This is particularly appealing since
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