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Bayesian estimation of a covariance matrix
with flexible prior specification
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Abstract Bayesian analysis for a covariance structure has been in use for decades.
The commonly adopted Bayesian setup involves the conjugate inverse Wishart prior
specification for the covariance matrix. Here we depart from this approach and adopt
a novel prior specification by considering a multivariate normal prior for the elements
of the matrix logarithm of the covariance structure. This specification allows for a
richer class of prior distributions for the covariance structure with respect to strength
of beliefs in prior location hyperparameters and the added ability to model potential
correlation amongst the covariance structure. We provide three computational methods
for calculating the posterior moment of the covariance matrix. The moments of interest
are calculated based upon computational results via Importance sampling, Laplacian
approximation and Markov Chain Monte Carlo/Metropolis–Hastings techniques. As a
particular application of the proposed technique we investigate educational test score
data from the project talent data set.
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1 Introduction

Multivariate analysis is of particular relevancy when the goal is inference for a covari-
ance matrix. In this way, the correlation structure amongst observations can most
appropriately be modeled. In addition, formal Bayesian analysis has long been used in
multivariate analysis. However, in contrast to the common Bayesian method we will
not make use of the inverse Wishart conjugate prior distributional specification for the
covariance matrix for reasons stated below.

The Wishart distribution arises quite naturally in multivariate statistics. Suppose
we have a random sample of p dimensional multivariate normal random vectors

Y1, . . . , Yn
iid∼ Np (θ,�), where Np denotes the p dimensional multivariate normal

distribution, θ is a (p × 1) mean vector and � is a (p × p) symmetric positive defi-
nite covariance matrix. Define the (p × 1) sample mean vector as Y = n−1∑n

i=1 Yi .

It follows that the (p × p) matrix
∑n

i=1

(
Yi − Y

) (
Yi − Y

)T
is distributed

Wp (n − 1,�) for n > p, where Wp denotes the p dimensional Wishart distribu-
tion, the degree of freedom parameter is equal to (n − 1) and the (p × p) matrix � is
the scale matrix parameter.

If the (p × p) random matrix M ∼ Wp (ν,�), then M−1 exists almost surely and
M−1 ∼ IWp

(
ν,�−1

)
where IWp denotes the p dimensional inverse Wishart distri-

bution (Dawid 1981). Note that the inverse Wishart is fully parameterized by a single
degree of freedom parameter ν and a scale matrix parameter �. Smaller values of
the degree of freedom parameter imply an increasingly more diffuse distribution. On
the other hand, larger values for the degree of freedom parameter yield a more highly
concentrated distribution about the scale matrix parameter.

In Bayesian statistics, the inverse Wishart distribution is commonly used in multi-
variate analysis to provide a convenient conjugate prior distribution for the multivar-
iate normal covariance matrix (Chen 1979; Dickey et al. 1985; Evans 1965). Since
the inverse Wishart distribution is a conjugate prior, it is both analytically convenient
and tractable. However, the inverse Wishart is limited in its flexibility to model prior
information. There are two main shortcomings of the inverse Wishart when used as a
prior distribution specification for a covariance matrix.

The first disadvantage is that the degree of freedom hyperparameter ν is the sole
expression of the confidence level in all the elements of the prior hyperparameter
matrix. That is, one value represents the strength of prior beliefs for the entire prior
scale matrix. This is unappealing in settings where the strength of prior information
about the covariance structure is not homogeneous. We may possibly have more or
less certainty in our prior knowledge with respect to the location of the elements of the
random matrix of interest. Unfortunately, the inverse Wishart prior distribution does
not possess the means by which to model this asymmetric level of confidence.
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