Weighted least-squares estimators of parametric functions of the regression coefficients under a general linear model

Yongge Tian

Received: 9 January 2008 / Revised: 9 June 2008 / Published online: 9 September 2008 © The Institute of Statistical Mathematics, Tokyo 2008

Abstract The weighted least-squares estimator of parametric functions $K\beta$ under a general linear regression model { $\mathbf{y}, X\beta, \sigma^2 \Sigma$ } is defined to be $K\hat{\beta}$, where $\hat{\beta}$ is a vector that minimizes $(\mathbf{y} - X\beta)' \mathbf{V} (\mathbf{y} - X\beta)$ for a given nonnegative definite weight matrix V. In this paper, we study some algebraic and statistical properties of $K\hat{\beta}$ and the projection matrix associated with the estimator, such as, their ranks, unbiasedness, uniqueness, as well as equalities satisfied by the projection matrices.

Keywords General linear regression model \cdot Parametric functions \cdot WLSE \cdot Projection matrix \cdot Unbiasedness of estimator \cdot Uniqueness of estimator