T. Royen

Integral representations and approximations for multivariate gamma distributions

Received: 4 October 2004 / Revised: 3 October 2005 / Published online: 22 June 2006 © The Institute of Statistical Mathematics, Tokyo 2006

Abstract Let *R* be a $p \times p$ -correlation matrix with an "*m*-factorial" inverse $R^{-1} = D - BB'$ with diagonal *D* minimizing the rank *m* of *B*. A new $\binom{m+1}{2}$ -variate integral representation is given for *p*-variate gamma distributions belonging to *R*, which is based on the above decomposition of R^{-1} without the restriction D > 0 required in former formulas. This extends the applicability of formulas with small *m*. For example, every *p*-variate gamma cdf can be computed by an at most $\binom{p-1}{2}$ -variate integral if p = 3 or p = 4. Since computation is only feasible for small *m*, a given *R* is approximated by an *m*-factorial R_0 . The cdf belonging to *R* is approximated by the cdf associated with R_0 and some additional correction terms with the deviations between *R* and R_0 .

Keywords Multivariate gamma distribution \cdot Multivariate chi-square distribution \cdot Multivariate Rayleigh-distribution \cdot Approximation for positive definite matrices \cdot *m*-factorial matrices