ON A FUNCTIONAL EQUATION GENERALIZING THE CLASS OF SEMISTABLE DISTRIBUTIONS

Mohamed Ben Alaya 1 and Thierry Huillet 2

¹LAGA, CNRS (UMR 7539), Institut Galilée, Université de Paris 13, 93430, Villetaneuse, France, e-mail: mba@zeus.math.univ-paris13.fr

²LPTM, Université de Cergy-Pontoise et CNRS (UMR 8089), 5, mail Gay-Lussac, Neuville sur Oise, 95031 Cergy-Pontoise Cedex, France, e-mail: Thierry.Huillet@ptm.u-cergy.fr

(Received October 28, 2002; revised October 18, 2004)

Abstract. With $\varphi(p)$, $p \geq 0$ the Laplace-Stieltjes transform of some infinitely divisible probability distribution, we consider the solutions to the functional equation $\varphi(p) = e^{-p\beta} \prod_{i=1}^{m} \varphi^{\gamma_i}(c_i p)$ for some $m \geq 1$, $c_i > 0$, $\gamma_i > 0$, $i = 1, \ldots, m$, $\beta \in \mathbb{R}$. We supply its complete solutions in terms of semistable distributions (the ones obtained when m = 1). We then show how to obtain these solutions as limit laws $(r \uparrow \infty)$ of normalized Poisson sums of iid samples when the Poisson intensity $\lambda(r)$ grows geometrically with r.

Key words and phrases: Stable and semistable laws, functional equation, limit laws, selfsimilarity, generalized semistability.