OPTIMISATION OF LINEAR UNBIASED INTENSITY ESTIMATORS FOR POINT PROCESSES

Tomáš Mrkvička^{1*} and Ilya Molchanov²

¹Mathematical Department, Pedagogical Faculty, University of South Bohemia, Jeronýmova 10, 17001 České Budějovice, Czech Republic

²Department of Mathematical Statistics and Actuarial Science, University of Bern, Sidlerstrasse 5, CH₋ 3012 Bern, Switzerland

(Received December 1, 2003; revised April 27, 2004)

Abstract. A general non-stationary point process whose intensity function is given up to an unknown numerical factor λ is considered. As an alternative to the conventional estimator of λ based on counting the points, we consider general linear unbiased estimators of λ given by sums of weights associated with individual points. A necessary and sufficient condition for a linear, unbiased estimator for the intensity λ to have the minimum variance is determined. It is shown that there are "nearly" no other processes than Poisson and Cox for which the unweighted estimator of λ , which counts the points only, is optimal. The properties of the optimal estimator are illustrated by simulations for the Matérn cluster and the Matérn hard-core processes.

Key words and phrases: Intensity estimation, Poisson process, linear estimators, Matérn cluster process; Matérn hard-core process.

^{*}This research was partially supported by Grant Agency of Czech Republic, project No. 201/03/D062.