A NEW CLASS OF METRIC DIVERGENCES ON PROBABILITY SPACES AND ITS APPLICABILITY IN STATISTICS

FERDINAND ÖSTERREICHER¹ AND IGOR VAJDA^{2*}

¹Institute of Mathematics, University of Salzburg, 5020 Salzburg, Austria ²Institute of Information Theory and Automation, Academy of Sciences, 18208 Prague, Czech Republic

(Received July 17, 1997; revised September 2, 2002)

Abstract. The class $I_{f_{\beta}}$, $\beta \in (0, \infty]$, of f-divergences investigated in this paper is defined in terms of a class of entropies introduced by Arimoto (1971, *Information and Control*, **19**, 181–194). It contains the squared Hellinger distance (for $\beta = 1/2$), the sum $I(Q_1||(Q_1+Q_2)/2)+I(Q_2||(Q_1+Q_2)/2)$ of Kullback-Leibler divergences (for $\beta =$ 1) and half of the variation distance (for $\beta = \infty$) and continuously extends the class of squared perimeter-type distances introduced by Österreicher (1996, *Kybernetika*, **32**, 389–393) (for $\beta \in (1, \infty]$). It is shown that $(I_{f_{\beta}}(Q_1, Q_2))^{\min(\beta, 1/2)}$ are distances of probability distributions Q_1 , Q_2 for $\beta \in (0, \infty)$. The applicability of $I_{f_{\beta}}$ -divergences in statistics is also considered. In particular, it is shown that the $I_{f_{\beta}}$ -projections of appropriate empirical distributions to regular families define distribution estimates which are in the case of an i.i.d. sample of size n consistent. The order of consistency is investigated as well.

Key words and phrases: Dissimilarities, metric divergences, minimum distance estimators.

^{*}Supported by the EC grant Copernicus 579.