DENSITY ESTIMATION FOR A CLASS OF STATIONARY NONLINEAR PROCESSES

KAMAL C. CHANDA*

Department of Mathematics and Statistics, Texas Tech University, Lubbock, TX 79409-1042, U.S.A.

(Received July 4, 2000; revised July 3, 2001)

Abstract. Let $\{X_t; t \in \mathbb{Z}\}$ be a strictly stationary nonlinear process of the form $X_t = \varepsilon_t + \sum_{r=1}^{\infty} W_{rt}$, where W_{rt} can be written as a function $g_r(\varepsilon_{t-1}, \ldots, \varepsilon_{t-r-q})$, $\{\varepsilon_t; t \in \mathbb{Z}\}$ is a sequence of independent and identically distributed (*i.i.d.*) random variables with $E|\varepsilon_1|^g < \infty$ for some $\gamma > 0$ and $q \ge 0$ is a fixed integer. Under certain mild regularity conditions on g_r and $\{\varepsilon_t\}$ we then show that X_1 has a density function f and that the standard kernel type estimator $\hat{f}_n(x)$ based on a realization $\{X_1, \ldots, X_n\}$ from $\{X_t\}$ is, asymptotically, normal and converges a.s. to f(x) as $n \to \infty$.

Key words and phrases: Nonlinear process, kernel type density estimators, bilinear process, central limit theorem, almost sure convergence.

^{*}The research of this author was partially carried out while he was a research scholar, on a sabbatical leave, at the Department of Statistics and Probability, Michigan State University.