RECURSIVE KERNEL DENSITY ESTIMATORS UNDER A WEAK DEPENDENCE CONDITION

LANH TAT TRAN

Department of Mathematics, Indiana University, Bloomington, IN 47405, U.S.A.

(Received March 8, 1989; revised June 19, 1989)

Abstract. Let X_i , t = ..., -1, 0, 1,... be a strictly stationary sequence of random variables (r.v.'s) defined on a probability space (Ω, \mathscr{F}, P) and taking values in \mathbb{R}^d . Let $X_1, ..., X_n$ be *n* consecutive observations of X_t . Let *f* be the density of X_1 . As an estimator of f(x), we shall consider $\hat{f}_n(x) = n^{-1} \sum_{j=1}^n b_j^{-d} K((x - X_j)/b_j)$. Here *K* is a kernel function and b_n is a sequence of bandwidths tending to zero as $n \to \infty$. The asymptotic distribution and uniform convergence of \hat{f}_n are obtained under general conditions. Appropriate bandwidths are given explicitly. The process X_t is assumed to satisfy a weak dependence condition defined in terms of joint densities. The results are applicable to a large class of time series models.

Key words and phrases: Asymptotic normality, uniform convergence, absolute regularity, density estimation, kernel, bandwidth.