Ann. Inst. Statist. Math. Vol. 41, No. 2, 347–363 (1989)

A MINIMUM AVERAGE RISK APPROACH TO SHRINKAGE ESTIMATORS OF THE NORMAL MEAN

D. L. HAWKINS¹ AND CHIEN-PAI HAN²

¹Department of Statistics and Actuarial Science, The University of Iowa, Iowa City, IA 52242, U.S.A. ²Department of Mathematics, The University of Texas at Arlington, P. O. Box 19408, Arlington, TX 76019, U.S.A.

(Received November 18, 1987; revised September 27, 1988)

Abstract. For the problem of estimating the normal mean μ based on a random sample X_1, \ldots, X_n when a prior value μ_0 is available, a class of shrinkage estimators $\hat{\mu}_n(k) = k(T_n)\overline{X}_n + (1 - k(T_n))\mu_0$ is considered, where $T_n = n^{1/2}(\overline{X}_n - \mu_0)/\sigma$ and k is a weight function. For certain choices of k, $\hat{\mu}_n(k)$ coincides with previously studied preliminary test and shrinkage estimators. We consider choosing k from a natural non-parametric family of weight functions so as to minimize average risk relative to a specified prior p. We study how, by varying p, the MSE efficiency (relative to \overline{X}) properties of $\hat{\mu}_n(k)$ can be controlled. In the process, a certain robustness property of the usual family of posterior mean estimators, corresponding to the conjugate normal priors, is observed.

Key words and phrases: Optimal weight function, Hilbert space, quadratic programming.